UNIVERSIDAD PRIVADA DE TACNA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"DISEÑO BAJO LA NORMATIVA AASHTO LRFD DE UN PUENTE CONTINUO TIPO VIGA DE CONCRETO ARMADO"

TESIS PARA OPTAR POR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

> Presentado por: Salcedo Choquehuanca, Diego Andre Valdivia Yacila, Rafael Jhon

> > Asesor: Mag. José Acero Martínez

> > > Tacna – Perú Diciembre 2015

AGRADECIMIENTOS

Agradecemos a todos los Ingenieros docentes que nos brindaron sus conocimientos en la Universidad Privada de Tacna, durante los casi cinco años que permanecimos en las aulas de la Escuela de Ingeniería Civil. Un agradecimiento muy especial al Mag. José Alberto Acero Martínez, un docente y amigo que nos apoyó en forma incondicional, gracias por sus consejos, su tiempo y experiencia; sin su apoyo no podríamos haber culminado esta tesis.

Al Ingeniero Angel Baldor Coila, por la información brindada en forma desinteresada y el compartir de su conocimiento resolviendo dudas y sus consejos, gracias. A la Ingeniera Dina Cotrado Flores, por su apoyo durante nuestra vida universitaria y en el inicio de la elaboración de esta Tesis.

Todo esto no pudo ser posible sin el apoyo de nuestras familias, nuestras madres, padres y hermanos de la familia Flores Vargas y la familia Flores Jiménez, a los que les agradecemos por su comprensión y paciencia durante todos estos años.

DEDICATORIA

A MIS PADRES

Quienes sabiamente me supieron guiar en la vida, siendo parte de mis planes, alegrías y tristezas.

A MIS HERMANAS Y MI SOBRINO

Quienes alegran mis días y me dan fuerzas para seguir luchando por mis sueños.

A MIS AMIGOS Y AMIGAS

Con quienes he compartido mis ideas, sueños y risas, y en especial a quienes me apoyaron incondicionalmente.

DIEGO

DEDICATORIA

A MIS PADRES

Por el apoyo constante en todo momento y ser parte siempre de mis alegrías y tristezas, y de mis logros y fracasos.

A MIS HERMANOS

Que son con los que comparto día a día y entre los dos forma un balance entre alegrías y consejos.

A MIS AMIGOS

Con quienes he compartido mis ideas, risas, y vivencias, en especial a quienes están ahí siempre que los necesito.

RAFFO

INDICE:

AGRADECIMIENTOS	i
DEDICATORIA	ii
PRÓLOGO	iv
CONTENIDO	vii
LISTA DE FIGURAS	xii
LISTA DE TABLAS	xvii
Capitulo I: Generalidades	
1.1 Planteamiento del Problema	3
1.2 Formulación del Problema	3
1.3 Justificación de la Investigación	3
1.4 Objetivos	3
Capitulo II: Marco Teórico	
2.1 Definición	3
2.2 Partes de la Estructura	4
2.3 Tipos de Puentes	8
2.3.1 Puente Losa	3
2.3.2 Puente Viga-Losa	3
2.3.3 Puente Viga	3
2.3.4 Puentes Aporticado	3
2.3.5 Puentes Arco	3
2.3.6 Puente Atirantado	3
2.3.7 Puente Colgante	3
2.4 Especificaciones Técnicas	8
2.5 Filosofía Y Diseño	8
2.6 Cargas Y Factores De Carga	4
2. Alcances	3
4. Especificaciones Técnicas	8

5. Filosofía	Y Diseño	8
6. Cargas Y	Factores De Carga	4
Capitulo III: D	Diseño del Puente	
3.1 Geomet	ría	4
3.2 Diseño	Losa Tablero	8
3.2.1 Esp	esor Del Tablero	8
3.2.2 Pes	o De Los Componentes (Carga Muerta)	8
3.2.2.1	Momentos Flectores Por Sobrecarga	8
3.2.3. Sot	precarga Vehicular (Carga Viva)	8
3.2.3.1	Momento Negativo Por Carga Viva En El Volado	8
3.2.3.2	Momento Positivo Por Carga	8
3.2.3.3	Máximo Momento Negativo Interior Por Carga Viva	8
3.2.3.4	Máxima Reacción Exterior Por Carga Viva	8
3.2.4 Esta	do Límite De Resistencia	8
3.2.5 Dise	ño De Acero Estructural	8
3.2.5.1	Selección De Refuerzo Y Recubrimiento.	8
3.2.5.2	Armadura Para El Momento Positivo	8
3.2.5.3	Armadura Para El Momento Negativo.	8
3.2.5.4	Acero De Distribución	8
3.2.5.5	Armadura Por Contracción Y Temperatura.	8
3.2.6. Lin	nitación De La Fisuración	8
3.2.6.1	Revisar La Armadura Para Momento Positivo	8
3.2.6.2	Revisar La Armadura Para Momento Negativo.	8
3.3 Diseño	De Vigas Te De Concreto Armado	8
3.3.1 Des	arrollo General De La Sección	8
3.3.2 Des	arrollar La Sección Típica	8
3.3.2.1	Espesor Del Ala Superior	8
3.3.2.2	Espesor Del Ala Inferior.	8
3.3.2.3	Espesor Del Alma.	8
3.3.2.4	Profundidad De La Superestructura.	8
3.3.2.5	Límites De La Armadura.	8

3.3.2.6	Ancho	De Ala Efectiva	8
3.3.2.7	Areas D	De Bielas Y Tirantes	8
3.3.3 Sobre	ecarga \	/ehicular (Carga Viva)	8
3.3.3.1	Estado	Límite De Resistencia	8
3.3.3.2 P	ara Los	o Otros Estados Límites	8
3.3.4 Selec	cionar I	Modificadores De Carga	8
3.3.5 Selec	cionar l	Las Combinaciones De Carga Y Los Factores	8
3.3.6 Calcu	lar las s	solicitaciones debido a sobrecargas	8
3.3.6.1	Selecci	ón Del Número De Carriles	8
3.3.6.2	Presen	cia Múltiple	8
3.3.6.3	Increme	ento Por Carga Dinámica	8
3.3.6.4	Factore	es De Distribución Para Momento	8
3.3	3.6.4.1	Vigas Interiores Con Tablero De Concreto	8
3.3	3.6.4.2	Vigas Exteriores Con Tablero De Concreto	8
3.3	3.6.4.3	Requerimiento Especial Para Vigas Exteriores	8
3.3	3.6.4.4	Distribuión De Momentos Por Carga Viva	8
3.3.6.5.	Distrib	ución De Factores Por Cortante	8
3.3	3.6.5.1	Vigas Interiores	8
3.3	3.6.5.2	Vigas Exteriores	8
3.3	3.6.5.3	Distribución De Corte Por Carga Viva	8
3.3	3.6.5.4	Distribuión De Momentos Por Carga Viva	8
3.3.7 Calcula	ar Las S	Solicitaciones Debidas A Otras Cargas	8
3.3.8. Inves	stigar El	Estado Límite De Servicio	8
3.3.8.1	Durabil	idad	8
3.3.8.2	Control	De Fisuración	8
3.3.8.3	Ancho	De Ala Efectiva	8
3.3.8.4	Armadu	ura De Flexión Positiva-Viga Exterior	8
3.3.8.5	Armadu	ura De Flexión Negativa-Viga Exterior	8
3.3.9 Carga	a Por Fa	atiga	8
3.3.10 Cálcu	lo De D	Peflexiones Y Flechas	8
3.3.10.1	Criterio	os Para La Deflexión-Carga Viva	8

3.3.10.2 Flecha Por Carga Muerta	8
3.3.11 Investigar Estado Límite De Resistencia	8
3.3.11.1 Flexión	8
3.3.12 Cortante	8
3.3.12.1 Requisitos Generales	8
3.3.12.2 Modelo De Diseño Por Secciones	8
3.3.12.3 Cálculo Del Diseño Por Cortante	8
3.3.12.3.1 Cálculo Del V_u ; M_u	8
3.3.12.3.2 Cálculo De La Relación De Tensión Corte	8
3.3.12.3.3 Cálculo Deformación Específica Longitunidal	8
3.3.12.3.4 Determinar Los Valores De Θ Y B	8
3.3.12.3.5 Determinar La Armadura Requerida En El Alma.	.8
3.3.12.3.6 Cálculo De La Separación De La Armadura	8
3.3.12.3.7 Revisar El Esfuerzo Longitunidal	8
3.4 Diseño De Apoyos Elastoméricos	8
3.4.1 Geometría Del Apoyo	8
3.4.2 Propiedades De Los Materiales	8
3.4.3 Cargas De Diseño	8
3.4.4 Requerimientos De Diseño	8
3.4.4.1 Deformaciones De Corte	8
3.4.4.2 Compresión, Rotación Y Corte Combinados	8
3.4.4.3 Estabilidad Del Apoyo Elastomérico	8
3.4.4.4 Acero De Refuerzo	8
3.4.4.5 Deflexión Debido A La Compresión	8
3.4.4.6 Pernos De Anclaje	8
3.5 Diseño De Diafragmas	8
3.5.1 Diseño De Las Diagonales	8
3.5.1.1 Resistencia A La Compresión	8
3.5.1.2 Resistencia A La Tensión	8
3.5.1.3 Pernos De La Conexión Viga - Diagonal	8
3.5.1.3.1 Resistencia Al Corte	8

3.5.1.3.2 Resistencia Al Aplastamiento	8
3.6 Diseño De Estribo	8
3.6.1 Geometría del puente	8
3.6.2 Propiedades de los materiales	8
3.6.3 Dimensiones Preliminares	8
3.6.4 Cargas De Suelo (Eh) (Ls)	8
3.6.5 Cargas Permanentes (Dw) (Dc)	8
3.6.6 Cargas De Sismo (Eq)	8
3.6.7 Cargas De Frenado (Br)	8
3.6.8 Estabilidad Del Estribo	8
3.6.8.1. Resistencia Al Volteo	8
3.6.8.1.1. Para El Estado Límite Resistencia I	8
3.6.8.1.2. Para El Estado Límite Evento Extremo I	8
3.6.8.2. Capacidad Portante Del Suelo	8
3.6.8.2.1. Para El Estado Límite Resistencia I	8
3.6.8.2.2. Para El Estado Límite Evento Extremo I	8
3.6.8.3. Chequeo Por Deslizamiento	8
3.6.8.3.1. Para El Estado Límite Resistencia I	8
3.6.8.3.2. Para El Estado Límite Evento Extremo I	8
3.6.9. Diseño De Los Elementos Del Estribo	8
3.6.9.1 Diseño De Muro (Cuerpo De Estribo)	8
3.6.9.2 Diseño De La Punta	8
3.6.9.3 Diseño Del Talón	8
3.6.9.4 Diseño De Pantalla Superior Del Muro (Parapeto)	8
3.7 Diseño De Pilares	8
3.7.1 Geometría del puente	8
3.7.2 Datos del pilar	8
3.7.3 Selección óptima del tipo de pila	8
3.7.4 Criterio de diseño para pilar cabeza martillo	8
3.7.4.1 Datos relevantes de la superestructura	8
3.7.4.2 Reacciones de carga muerta en viga	8

3.7.4.3 Reacciones de	e carga viva por línea de diseño	.8
3.7.4.4 Selección de la	as dimensiones preliminares de pilar	8
3.7.4.5 Efectos de la c	carga muerta	8
3.7.4.6 Cálculo de los	efectos de carga viva	8
3.7.4.7 Cálculo de los	efectos de otras cargas	.8
3.7.4.7.1. Fuerz	a de frenado	.8
3.7.4.7.2. Carga	a de viento (WL, WS)	.8
3.7.5 Diseño de elementos	del pilar	.8
3.7.5.1 Diseño cabeza	a de pilar	.8
3.7.5.1.1. Prove	er refuerzo para control de agrietamiento	8
3.7.5.2 Diseño columr	na del pilar	.8
3.7.5.2.1. Diseñ	o para carga axial y flexión	.8
3.7.5.2.2. Diseñ	o por cortante	.8
3.7.5.3 Diseño de la z	apata	.8
3.7.5.3.1. Diseñ	o por punzonamiento	.8

Conclusiones	8
Bibliografía	8

LISTA DE FIGURAS

Figura 1. Liberty Bridge, Puente con luz mayor a 50 m	.6
Figura 2. Puente Caminero y Puente Ferroviario	.6

Figura 3. Puente Gard, Acueducto hecho por los romanos9
Figura 4. Düsseldorf-Neuss, Puente de Acero9
Figura 5. Puente Rafael Urdaneta, Puente Mixto12
Figura 6. Puente George, Puente de Arco12
Figura 7. Puente Penang, Puente Curvo14
Figura 8. Carga de camión de diseño6
Figura 9. Carga de tándem de diseño6
Figura 10. Coeficiente de empuje activo, ka9
Figura 11. Coeficiente de empuje pasivo, kp9
Figura 12. Vista Longitudinal del Puente12
Figura 13. Sección Transversal del Puente12
Figura 14. Carga muerta de losa tablero " W_S "14
Figura 15. Momentos debido a la " W_S "15
Figura 16. Cuadro de resumen por la carga " W_S "15
Figura 17. Carga muerta de losa volado " W_0 "16
Figura 18. Momentos debido a la " W_0 "16
Figura 19. Cuadro de resumen por la carga " W_S "16
Figura 20. Carga muerta de barreras " P_B "17
Figura 21. Momentos debido a la " P_B "
Figura 22. Cuadro de resumen por la carga " P_B "
Figura 23. Carga muerta capa de rodadura " <i>W_{DW}</i> "18
Figura 24. Momentos debido a la " W_{DW} "

Figura 25. Cuadro de resumen por la carga " W_{DW} "19
Figura 26. Carga viva un carril cargado " W_{LL-1} "
Figura 27. Momentos debido a la " W_{LL-1} "
Figura 28. Cuadro de resumen por la carga " W_{LL-1} "23
Figura 29. Carga viva tres carriles cargados " W_{LL-3} "24
Figura 30. Momentos debido a la " W_{LL-3} "24
Figura 31. Cuadro de resumen por la carga " W_{LL-3} "24
Figura 32. Carga viva un carril cargado " W_{LL-1} "25
Figura 33. Momentos debido a la " W_{LL-1} "
Figura 34. Cuadro de resumen por la carga " W_{LL-1} "26
Figura 35. Carga viva un carril cargado " W_{LL-1} "27
Figura 36. Reacciones debido a la " W_{LL-1} "27
Figura 37. Esquema para análisis de momentos31
Figura 38. Esquema de acero estructural34
Figura 39. Bloque de la sección transversal de losa40
Figura 40. Bloque de la sección transversal de losa41
Figura 41. Esquema corte transversal de la losa armada42
Figura 42. Dimensiones de prueba para el puente viga Te45
Figura 43. Volado parte de calzada de48
Figura 44. Definición Ley de Momentos51
Figura 45. Ubicación transversal de los camiones de diseño53
Figura 46. Posición de la carga viva para dar el máximo momento positivo en el tramo exterior

Figura 47. Posición de la carga viva para dar el máximo momento negativo en el soporte
Figura 48. Posición de la carga viva para dar el máximo momento positivo en el tramo interior
Figura 49. Posición de la carga viva para dar el máximo cortante en el soporte
Figura 50. Posición de la carga viva para dar el máximo cortante en el lado izquierdo del soporte interior60
Figura 51. Posición de la carga viva para dar el máximo cortante en el lado derecho del soporte interior60
Figura 52. Longitud entre puntos de inflexión para cargas permanentes .64
Figura 53. Análisis de la carga uniformemente distribuida77
Figura 54. Arreglo de Apoyo93
Figura 55. Notaciones de las dimensiones del apoyo94
Figura 56. Comportamiento de las vigas principales sin diafragma ante cargas sísmicas
Figura 57. Disposición de diafragmas
Figura 58. Geometría de la conexión de las diagonales con la viga116
Figura 59. Sobrecarga sobre el relleno121
Figura 60. Distribución de la carga de frenado135
Figura 61. Esquema frontal del pilar137
Figura 62. Esquema transversal del pilar137
Figura 63. Determinación de la reacción por peso de carril de diseño 138
Figura 64. Determinación de la reacción por peso de camión de diseño.138

Figura 65. Determinación de la reacción por peso de camión de diseño139
Figura 66. Vista en planta del área tributaria para el pilar
Figura 67. Vista en elevación del área tributaria para el pilar139
Figura 68. Ángulo de ataque del viento a 60° en cabezal139
Figura 69. Ángulo de ataque del viento a 60° en columna
Figura 70. Control chequeo de tensión límite139
Figura 71. Vista en planta de la zapata139
Figura 72. Vista en planta y elevación para el área crítica

LISTA DE TABLAS

Tabla 1. Modificadores de carga4
Tabla 2. Factores de presencia múltiple. 7
Tabla 3. Incrementos por efectos dinámicos. 7
Tabla 4. Combinaciones de carga. 11
Tabla 5. Factores de carga para cargas permanentes11
Tabla6.Profundidadesmínimasutilizadastradicionalmenteparasuperestructuras de profundidad constante.12
Tabla 7. Fajas equivalentes20
Tabla 8. Factor de presencia múltiple (m)21
Tabla 9. Factores de carga para cargas permanentes, γ_P

Tabla 10. Combinaciones de cargas y factores de carga	29
Tabla 11. Incremento por carga dinámica, IM	29
Tabla 12. Recubrimiento para las armaduras principales n (mm)	o protegidas 33
Tabla 13. Coeficientes de las ordenadas de influencia	55
Tabla 14. Momentos y Cortantes en Vigas Interiores	62
Tabla 15. Momentos y Cortantes en Vigas Exteriores	63
Tabla 16. Coeficientes θ y β	90
Tabla 17. Altura de suelo equivalente para carga vehicular se perpendiculares al tráfico	obre estribos 119
Tabla 18. Estados límites	121
Tabla 19. Momentos debido a fuerzas verticales	122
Tabla 20. Momentos debido a fuerzas Horizontales	122
Tabla 21. Momentos debido a fuerzas verticales	123
Tabla 22. Momentos debido a fuerzas Horizontales	123
Tabla 23. Momentos debido a fuerzas verticales	125
Tabla 24. Momentos debido a fuerzas Horizontales	125
Tabla 25. Momentos debido a fuerzas verticales	126
Tabla 26. Momentos debido a fuerzas Horizontales	126
Tabla 27. Cargas horizontales actuantes	127
Tabla 28. Cargas verticales actuantes	128
Tabla 29. Cargas horizontales actuantes	128
Tabla 30. Cargas verticales actuantes	129

Tabla 31. Cargas verticales actuantes. 129
Tabla 32. Cargas horizontales actuantes130
Tabla 33. Cargas verticales actuantes
Tabla 34. Cargas horizontales actuantes 132
Tabla 35. Valores de Vo y Zo para diferentes condiciones de la superficiecontra el viento.129
Tabla 36. Presiones básicas del viento P_B , para diferentes ángulos de ataque y V_B 160 km/h130
Tabla 37. Presiones básicas del viento132
Tabla 38. Para los factores de los estados límites 132
Tabla 39. Cuadro de resumen para el estado límite Resistencia I129
Tabla 40. Cuadro de resumen para el estado límite Resistencia V130
Tabla 41. Cuadro de resumen cargas verticales para el estado límiteResistencia I
Tabla 42. Cuadro de resumen cargas horizontales para el estado límiteResistencia I132
Tabla 43. Cuadro de resumen para el estado límite Resistencia V129
Tabla 44. Cuadro de resumen para el estado límite Resistencia V para eldiseño de zapata

CONCLUSIONES

Se concluye satisfactoriamente el diseño de los diferentes elementos que componen el puente de 4 carriles cumpliendo con los criterios de diseño, parámetros y restricciones que presenta la NORMA AASHTO, "LRFD Bridge Design Specifications". American Association of State Highway and Transportation Officials. Como se presentan en esta tesis nombrando el artículo utilizado para el diseño de cada elemento del Puente. El diseño final estará compuesto por:

- Losa de concreto armado:

Geometría: Espesor de 20 cm bajo la via y 23 cm en el volado.

Refuerzo de acero: Que cumple con todos los requisitos de los diferentes estados límites y los controles de fisuración requeridos para el diseño de puentes.

Para momento positivo: barras 1 $\varphi^5/_8$ " @ 250 mm.

Para momento negativo: barras 1 $\varphi^5/_8$ " @ 200 mm.

Para acero de distribución: barras 1 $\varphi^1/_2$ " @ 200 mm.

Armadura por contracción y temperatura: barras 1 $\phi^3/_8$ " @ 330 mm.

- Vigas Te de concreto armado:

Geometría: Alma de 40 cm de ancho y altura de 160 cm, Ala superior con espesor de 20 cm y ancho de 210 cm.

Refuerzo de acero: Que cumple con todos los requisitos de los diferentes estados límites y los controles de fisuración requeridos para el diseño de puentes.

Para flexión positiva: 16 barras de 28 mm de diámetro (28.65 mm)

Para flexión negativa: 18 barras de 28 mm de diámetro (28.65 mm)

Separación de estribos de 250 mm.

- Apoyos Elastómericos:

Se eligió un apoyo elastomérico de dureza 60, de L=350 mm, W=400 mm, con un espesor total de 111 mm conformado por: 7 capas de elastómero de neopreno de 15 mm y 4 planchas de refuerzo de 1.5 mm G50.

Pernos de Anclaje de 1 3/4" de diámetro y un espesor de placa base de 1 1/2".

- Diafragmas:

Se eligio un angulo L de 3"x3"x5/16" y 4 pernos de 1/2".

- Estribos:

Conformado por los elementos:

Pantalla superior (muro parapeto)

Para momento positivo: barras 1 $\varphi^5/_8$ " @ 250 mm.

Para momento negativo: barras 1 $\varphi^5/_8$ " @ 200 mm.

Para acero de distribución: barras 1 $\varphi^5/_8$ " @ 250 mm.

Pantalla muro (cuerpo del estribo)

Para momento positivo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 150 mm.

Para momento negativo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 125 mm.

Para acero de distribución: barras 1 $\varphi^5/_8$ " @ 250 mm. Para fundación (cimentación) Para momento positivo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 300 mm. Para momento negativo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 300 mm. Para acero de distribución: barras 1 $\varphi^3/_4$ " @ 200 mm.

BIBLIOGRAFIA

- American Association of State Highway and Transportation Officials (2007): AASHTO LRFD Bridge Design specifications SI Units: Washington - USA.
- American Association of State Highway and Transportation Officials (2012). AASHTO LRFD Bridge Design Specifications. Washington – USA.
- Richard M. Barker (1997): Design of Highway Bridges based on AASHTO LRFD bridge design specifications.
- Richard M. Barker (2007): Design of Highway Bridges based on AASHTO LRFD bridge design specifications.
- MC Ing. Arturo Rodríguez Serquen (2012): Diseño de Puentes con AASHTO LRFD 2010.
- AASHTO/NSBA. (2004). Steel bridge bearing design and detailing guidelines. Washington, D.C.
- Ministerio de Transportes y Comunicaciones. (2010): Manual de diseño de puentes, Lima.

CAPÍTULO I: GENERALIDADES

1.1 PLANTEAMIENTO DEL PROBLEMA

Los sismos representan la expresión más clara de que la superficie en el cual habitamos se encuentra en continua evolución. Por lo tanto, la ocurrencia continua de estos eventos, nos permitirá conocer cada vez más que regiones de la Tierra son más dinámicas con respecto a otras. Una fuente frecuente de sismos la constituye la colisión entre la placa de Nazca y Sudamérica ubicadas a lo largo del litoral peruano. Este proceso geodinámico ha dado origen a la deformación del borde Oeste de Sudamérica. Ambos procesos se han desarrollado con la ocurrencia continua de sismos a diferentes niveles de profundidad, de ahí que el Perú sea considerado como uno de los países de mayor potencial sísmico en el mundo.

En la actualidad por la ocurrencia de sismos destructivos desde el siglo XVI y debido a su sismicidad históricas, el diseño estructural debe tomar todas las medidas preventivas pertinentes; entre las estructuras vulnerables se encuentran los puentes ya que son estructuras esenciales de comunicación y deben seguir en funcionamiento después de un sismo.

Se citan los tipos de fallas más importantes que se registran en puentes, tras la ocurrencia de eventos sísmicos. Los aquí citados corresponden a eventos sísmicos anteriores en distintas localidades del mundo, como en el terremoto de Niigata (Japón) el 16 de Junio en 1964, también el gran terremoto de Hanshin, comúnmente conocido como el terremoto de Kobe donde colapsó la autopista Hanshin, fue uno de los terremotos con más estragos en Japón ocurrió el 17 de enero de 1995.

Sismo de San Fernando (California) del 9 de Febrero de 1971, que afectó 62 puentes con un 25% de daños muy severos o ruina total; e igualmente se tuvieron daños muy graves en puentes durante los terremotos de Guatemala (1976); Friuli, en Italia (1976); Miyagi-Ken-Oki, en Japón (1978).

El Perú también tuvo daños de puentes durante los sismos de Huaraz del 30 de Mayo de 1970; el sismo de Arequipa del 16 de Febrero de 1979; el sismo de Nazca del 12 de Noviembre de 1996 y recientemente el sismo de Ático del 23 de Junio del 2001.¹

1.2 FORMULACIÓN DEL PROBLEMA

Se ha considerado el problema general como:

¿Es el diseño estructural de puentes por el método ASSHTO LRFD adecuado para emplearlo en el Perú?

A su vez, los problemas específicos como:

¿Serán las cargas de diseño de la norma AASHTO LRFD las adecuadas para su uso en el Perú?

¿Qué parámetros son necesarios para el diseño del puente que permitan el desarrollo del modelo escogido?

1.3 JUSTIFICACIÓN DE LA INVESTIGACIÓN

Los congestionamientos vehiculares y la apertura comercial que experimenta el Perú ha obligado al mejoramiento y creación de muchas vías de comunicación y, por consiguiente, la construcción de puentes (tanto vehiculares como peatonales) ha cobrado auge en los últimos años,

¹ Acero Martínez, J. (2009). Comparación de las normas sísmicas más utilizadas para puentes continuos en el Perú y sus métodos de análisis.

especialmente en zonas urbanas densamente pobladas y en las principales carreteras. Estos sistemas de infraestructura civil resultan, entonces, de vital importancia para la economía del país, ya que, a través de ellos se desplazan millones de toneladas de carga comercial y cientos de miles de personas cada año.

Por esto se requiere hacer un diseño estructural adecuado que después de un evento sísmico y pueda continuar con su función; por eso se formulará el diseño de puente continuo con condiciones en el Perú, los cuales serán datos de carácter hipotético que se especificarán durante la tesis y se adoptará el diseño según la normativa AASHTO LRFD.

Finalmente, cabe mencionar que la investigación que aquí se desarrolla puede servir como un insumo a tomar en cuenta como guía para el diseño de puentes bajo la normativa AASHTO LRFD.

1.4 OBJETIVO

El objetivo de la presente tesis es realizar el diseño estructural de un puente continuo tipo viga de concreto armado, utilizando la metodología establecida en la norma AASHTO LRFD, con condiciones y parámetros para el Perú; lo cual los datos para el lugar específico se tomarán forma hipotética.

1.5 OBJETIVOS ESPECÍFICOS

Los objetivos específicos del presente proyecto son:

- Determinar si las cargas de diseño establecidas en la norma AASHTO
 LRFD son adecuadas para su uso en el Perú.
- Identificar los parámetros para el diseño de un puente continuo tipo viga.

CAPÍTULO II: MARCO TEÓRICO

2.1 DEFINICIÓN

Según la AASHTO, un puente es una obra que se construye para salvar un obstáculo no menor a 6100 mm dando así continuidad a una vía. Suele sustentar un camino, una carretera o una vía férrea, pero también puede transportar tuberías y líneas de distribución de energía. Los puentes pueden formar parte de una carretera o estar sobre o debajo de esta. Los puentes que soportan un canal o conductos de agua se llaman acueductos. Aquellos construidos sobre terreno seco o en un valle, viaductos. Los que cruzan autopistas y vías de tren se llaman pasos elevados.

2.2 PARTES DE LA ESTRUCTURA

2.2.1 SUPERESTRUCTURA:

Son los componentes estructurales del puente que constituyen el tramo horizontal, está conformada por: tablero que soporta directamente las cargas; vigas, armaduras, cables, bóvedas, arcos, quienes transmiten las cargas del tablero a los apoyos.

Tablero.- Es el componente, con o sin superficie de rodamiento, que soporta las cargas de rueda en forma directa y es soportado por otros componentes.

Estructura Portante.- Es el componente estructural que soporta al tablero y se apoya en sus extremos con la subestructura, es decir transmite las cargas procedentes del tablero a los estribos y/o pilas.

Accesorios del tablero.- Son elementos que sirven para dar funcionalidad al puente y seguridad tanto a los vehículos como a los peatones: cordón barrera, barandas, barreras.

2.2.2 SUBESTRUCTURA:

Son los componentes estructurales del puente que soportan el tramo horizontal, los componentes más importantes son:

Pilares (apoyos centrales); estribos (apoyos extremos) que soportan directamente la superestructura; y cimientos, encargados de transmitir al terreno los esfuerzos.

Pilares.- Son elementos de apoyo intermedios los cuales conducen los esfuerzos de la superestructura hacia las fundaciones están diseñados para resistir presiones hidráulicas, cargas de viento, cargas de impacto, etc. Son más susceptibles a los efectos de la socavación por lo que las fundaciones deberán estar por debajo de la altura máxima de socavación. Pueden ser de concreto o acero, aun en puentes de acero los pilares de concreto son a menudo adoptados, en algunos casos los pilares muy altos son elaborados en segmentos de concreto prefabricado. Los pilares pueden ser de una sección transversal constante o variable eso dependerá de la altura del pilar, también pueden tener una sección llena o una sección hueca la elección de los pilares depende de la constructibilidad y la estética.

Estribos.- Son los que proveen soporte a la superestructura, establecen la conexión entre la superestructura y el terraplén, son diseñados para soportar la carga de la superestructura la cual es transmitida por medio de los elementos de apoyo, el peso de la losa de transición y las presiones del suelo (empuje de tierras). Los estribos están conformados por una losa de fundación que transmite el peso de los estribos directamente al suelo, la losa sirve de cubierta para un sistema de pilotes que soportan la carga, el muro frontal, asiento del puente, muro de retención encima del asiento del puente, losa de aproximación, los estribos también poseen juntas de dilatación o expansión que ajustan los desplazamientos de la superestructura.

Cimientos.- Se encuentran bajo el terreno de la superficie son encargados de transmitir toda la carga al suelo, al absorber dicha carga el suelo se contracciona dando origen a los asentamientos. En todo diseño de fundaciones dos condiciones se deben satisfacer: "que el asentamiento total de la estructura este limitado a una cantidad tolerablemente pequeña y que en lo posible el asentamiento diferencial de las distintas partes de la estructura se elimine". (Arthur Nilson, 2000, 499).

2.3 CLASIFICACIÓN DE PUENTES

Los puentes son clasificados según sus características tales como longitud, servicio prestado, material de la superestructura, etc.

Algunas de las clasificaciones más comunes son:

Por su longitud:

Puentes mayores (Luces de vano mayores a los 50 m.). Puentes menores (Luces entre 10 y 50 m.).

Alcantarillas (Luces menores a 10 m.).

Figura 1. Pittsburgh, Pennsylvania. Liberty Bridge Puente con luz mayor a 50 m. Fuente: www.brooklineconnection.com

Por el servicio que presta:

Puentes camineros.

Puentes ferroviarios.

Puentes en pistas de aterrizaje

Puentes acueducto (para el paso de agua solamente).

Puentes canal (para vías de navegación).

Puentes para oleoductos.

Puentes basculantes (en zonas navegables)

Puentes parpadeantes (en cruces de navegación)

Pasarelas (o puentes peatonales)

Puentes mixtos (resultado de la combinación de casos).

Figura 2. Puente Caminero y Puente Ferroviario Fuente: www.apuntesingenierocivil.blogspot.pe

Figura 3. Puente Gard, Francia. Acueducto hecho por los romanos. Fuente: www.sobrefrancia.com

Por el material de la superestructura:

Puentes de Madera

Puentes de mampostería de ladrillo.

Puentes de mampostería de piedra. (Fotografía 1.5.)

Puentes de concreto ciclópeo.

Puentes de concreto simple.

Puentes de concreto armado.

Puentes de concreto pretensado.

Puentes de sección mixta. (Fotografía 1.6)

Puentes metálicos.

Figura 4. Düsseldorf-Neuss, Alemania. Puente de Acero. Fuente: www.footage.framepool.com

Figura 5. Puente Rafael Urdaneta, en Zulia, Venezuela. Puente mixto. Fuente: www.pt.wikipedia.org

Por los mecanismos de transmisión de cargas a la infraestructura:

Puentes de vigas.

Puentes aporticados.

Puentes de arco.

Puentes en volados sucesivos.

Puentes atirantados

Puentes colgantes.

Figura 6. Puente George, en Virginia, USA. Puente de Arco Fuente: www.pinterest.com

Por el ángulo que forma el eje del puente con el paso inferior:

Puentes rectos (Ángulo de esviaje 90°).

Puentes esviajados (Ángulo de esviaje menor a 90°).

Puentes curvos (Ángulo variable a lo largo del eje).

Figura 7. Puente Penang, Malasia. Puente curvo Fuente: www.blog.citroen.es

2.4 ALCANCES

Los alcances de la presente tesis comprenden el diseño de la superestructura (losa de concreto, vigas T de concreto armado, apoyos elastómericos y diafragmas) y el diseño de la subestructura (Estribos y Pilares).

2.5 ESPECIFICACIONES TÉCNICAS

- 2.5.1 Concreto
- En losa del tablero: f'c = 280 kg/cm² = 28 Mpa = 27.47 N/mm²
- En estribos y pilares: f'c = 210 kg/cm² = 21 Mpa = 20.60 N/mm²

2.5.2 Acero

- En barras de acero corrugadas:

 $fy = 4200 \text{ kg/cm}^2 = 42 \text{ Mpa} = 414 \text{ N/m m}^2$

- En vigas T : f'c = 280 kg/cm² = 28 Mpa = 27.47 N/mm²
- 2.5.3 Soldadura y pernos

- Pernos de alta resistencia ASTM A325:

Fu = 8400 kg/cm² = 824.04 N/mm²

- Pernos de anclaje ASTM F1554 Gr55:

- Conectores de corte ASTM A108:

2.5.4 Características del suelo

Resistencia admisible del terreno: 4 kg/cm²

2.6 FILOSOFÍA DE DISEÑO [CAPITULO 1.3 AASHTO LRFD]

Todos los componentes y conexiones deberán satisfacer, para cada estado límite, la ecuación 1.3.2.1-1 de las especificaciones de la AASHTO. Para los estados límite de servicio y evento extremo, los factores de resistencia deberán tomarse como 1.0, excepto para pernos y para columnas de concreto, para los cuales la AASHTO tiene especificaciones distintas.

$$\sum ni\gamma iQi \leq \phi Rn = Rr$$

(Ec. 1.3.2.1-1 de las especificaciones de la AASHTO)

Siendo:

Para cargas donde se utiliza el valor máximo de γi : $ni = nDnRnI \ge 0.95$ Para cargas donde se utiliza el valor mínimo de γi : $ni = 1 \ nDnRnI \le 1.0$ Donde:

 γi = Factor de carga, aplicado a las solicitaciones.

 ϕ = Factor de resistencia, aplicado a la resistencia nominal.

ni = Modificador de carga

- nD = Factor relacionado a la ductilidad.
- nR = Factor relacionado a la redundancia.
- nI = Factor relacionado a la importancia operacional.

Qi = Solicitación

Rn = Resistencia nominal

Rr = Resistencia factorizada = ϕRn

La Tabla 1 muestra los valores de los modificadores de carga para el estado límite de Resistencia. Para todos los demás estados límite los modificadores de carga serán iguales a 1.

Modificador de carga		Aplicación
n _D	≥ 1.05	Componentes no dúctiles
	= 1.00	Diseños convencionales y detalles que cumplan con las especificaciones AASHTO.
	≥ 0.95	Componentes y conexiones con consideraciones especiales de ductilidad.
n _R	≥ 1.05	Miembros no redundantes
	= 1.00	Niveles convencionales de redundancia
	≥ 0.95	Niveles excepcionales de redundancia
n_l	≥ 1.05	Puentes críticos o esenciales
	= 1.00	Puentes típicos
	≥ 0.95	Puentes relativamente poco importantes

Tabla 1. Modificadores de carga

Fuente: Tabla 1 Diseño de un puente con estructura de acero, Acevedo M.

2.7 CARGAS Y FACTORES DE CARGA [Sección 3 AASHTO LRFD]

2.7.1. Cargas a utilizar:

2.7.1.1 Cargas Permanentes:

DC = Carga muerta de los componentes estructurales y accesorios no estructurales

- DW = Carga muerta de las superficies de rodadura
- EH = Presión de tierra horizontal
- EV = Presión vertical proveniente del peso del relleno.
- 2.7.1.2 Cargas transitorias:
- LL = Carga viva vehicular
- BR = Fuerza de frenado vehicular
- PL = Carga viva peatonal
- LS = Carga viva superficial
- EQ = Carga de sismo
- 2.7.1.3 Pesos Específicos
- Peso específico del concreto: 2400 kg/m³
- Peso específico del relleno: 1900 kg/m³
- Peso específico del acero estructural: 7850 kg/m³
- Peso específico del asfalto: 2250 kg/m³
- 2.7.1.4 Cargas vivas

La norma establece que la carga viva vehicular debe consistir en la combinación de un camión o tándem de diseño (el más desfavorable). Además, las cargas del camión o del tándem deberán incrementarse en los porcentajes indicados en la Tabla 3.²

2.7.1.4.1 Camión de diseño

Los pesos y las separaciones entre los ejes y las ruedas del camión de diseño HL93 serán como se especifica en la Figura 8.³

² Acevedo Laos, M. (2015). Diseño de un puente con estructura de acero.

³ AASHTO LRFD, (2010). Especificaciones de diseño para puentes.

Figura 8. Carga de camión de diseño Fuente: Figura 3.6.1.2.2-1 AASHTO LRFD

2.7.1.4.2 Tándem de diseño

El tándem de diseño consistirá en un par de ejes de 110 kN con una separación de 1200 mm. La separación transversal de las ruedas se deberá tomar como 1800 mm.⁴

Figura 9. Carga de tándem de diseño Fuente: www.aboutcivil.org

2.7.1.4.3 Sobrecarga distribuida

La norma considera una sobrecarga distribuida de 950 kg/m, uniformemente distribuida en dirección longitudinal. Se supone además

⁴ Castellanos, M. C. (2010). Validación de la norma AASHTO LRFD en puentes de hormigón armado.

que esta carga se distribuye uniformemente en un ancho de 3 metros en dirección transversal. No se deben considerar los efectos dinámicos de la tabla 3 para esta sobrecarga.⁵

2.7.1.4.4 Presencia múltiple de carga viva

Los efectos debido a la carga viva deben determinarse considerando cada posible combinación de número de vías cargadas, multiplicando las cargas provenientes del camión o tándem de diseño por un factor de presencia múltiple, para tener en cuenta la probabilidad de que cada vía esté ocupada por toda la carga de diseño HL93. Los factores de presencia múltiple se muestran en la tabla 2.

Número de vías cargadas	Factor de presencia múltiple, m
1	1.2
2	1
3	0.85
>3	0.65

Tabla 2. Factores de presencia múltiple. Fuente: Tabla 3.6.1.1.2-1 AASHTO LRFD

2.7.1.4.5 Incremento por efectos dinámicos: IM

Los efectos estáticos del camión o tándem de diseño deben ser incrementados por los porcentajes mostrados en la Tabla 3 de incrementos por efectos dinámicos. El factor que debe aplicarse a la carga estática debe tomarse como: (1+IM/100). El incremento por efectos dinámicos no debe aplicarse a cargas peatonales o a la sobrecarga distribuida.⁶

⁵ Acevedo Laos, M. (2015). Diseño de un puente con estructura de acero.

⁶ Acevedo Laos, M. (2015). Diseño de un puente con estructura de acero.

Componente	IM
Uniones del tablero - Todos los estados límite	75%
Todos los otros componentes:	
Estados límite de fatiga y	
- fractura	15%
 Todos los otros estados límite 	33%
Adaptado de la tabla 3.6.2.1-1de las especificaciones de la	AASHTO

Tabla 3. Incrementos por efectos dinámicos. Fuente: Tabla 3.6.2.1-1 AASHTO LRFD

2.7.1.5 Presiones de tierra

Se considerarán los empujes activo y pasivo del suelo. No se considerará la presión lateral del suelo en reposo, pues la AASHTO considera que para muros en voladizo convencionales de más de 1.5 m. de altura, se puede considerar que el movimiento horizontal de la cima del muro debido a la deformación de la estructura y la rotación de la base, es suficiente como para desarrollar condiciones activas.Para calcular los coeficientes de empuje activo y pasivo se utilizaran las teorías de Coulomb.⁷

2.7.1.5.1. Coeficiente de empuje activo, ka

El valor del coeficiente de empuje activo se tomará como:

 $ka = sen2(\theta + \varphi f) \Gamma(sen2\theta sen(\theta - \delta))$

(Ec. 3.11.5.3-1 de las especificaciones de la AASHTO)

En el cual:

$$\Gamma = (1 + \sqrt{(\varphi f + \delta)}(\varphi f - \beta) \operatorname{sen}(\theta - \delta)\operatorname{sen}(\theta + \beta)) 2$$

(Ec. 3.11.5.3-1 de las especificaciones de la AASHTO)

Donde:

⁷ AASHTO LRFD, (2012). Especificaciones de diseño para puentes.

 δ = Ángulo de fricción entre el relleno y el muro, tal como se muestra en la Figura 10.

 β = Ángulo entre el relleno y la horizontal, tal como se muestra en la Figura 10.

 θ = Ángulo entre la cara trasera del muro y la horizontal, tal como se muestra en la

Figura 10.

 φf = Ángulo de fricción interna del suelo.

Figura 10. Coeficiente de empuje activo, ka. Fuente: Figura 3.11.5.3-11 AASHTO LRFD.

2.7.1.3.2. Coeficiente de empuje pasivo, kp

Se tomará el valor del coeficiente de empuje pasivo de la Figura 11.

Figura 11. Coeficiente de empuje pasivo, kp.

2.7.1.5.3. Consideraciones sísmicas para los empujes laterales de tierra

La AASTHO establece que, para muros ubicados en zonas con una aceleración pico *AS* de 0.4g, no es necesario modificar los empujes laterales estáticos del suelo para incluir efectos dinámicos, siempre y cuando la licuefacción no produzca la falla del talud, ni el sismo produzca una falla del talud debido a la presencia de arcillas sensibles que pierdan resistencia debido al zarandeo producido. Por ello, no se amplificarán las presiones estáticas debido a efectos dinámicos.

2.7.2. Factores de carga y combinaciones

La norma establece distintas combinaciones de carga dependiendo de los distintos estados límite a los que estará expuesto el puente. En esta tesis se tomarán los siguientes estados límite:

- RESISTENCIA I: Uso vehicular normal, sin considerar viento.

- EVENTO EXTREMO I: Incluyendo sismo.

- SERVICIO I: Relacionado con el uso operativo normal del puente, con una velocidad del viento de 90 km/h y con todas las cargas a su valor sin factorizar. Se utilizará este estado límite para analizar las deflexiones de las vigas principales.

 SERVICIO II: Controla la fluencia de la estructura de acero y el deslizamiento de las conexiones críticas, debido a la carga viva vehicular.
 Se utilizará este estado límite para controlar los esfuerzos de las vigas principales.

Los factores de carga para cada combinación de carga elegida para esta tesis, se muestran en las tablas 4 y 5.

Estado límite	DC, DW, EH, EV	LL, BR, PL, LS	EQ
RESISTENCIA I	γ_p	1.75	-
EVENTO EXTREMO I	γ_p	Υ _{ΕQ}	1
SERVICIO I	1	1	-
SERVICIO II	1	1.3	-

Tabla 4. Combinaciones de carga.

Fuente: Tabla 3.4.1-1 AASHTO LRFD

Tipo de carga	Factor de carga		
npo do carga	Máximo	Mínimo	
DC: Componentes y auxiliares	1.25	0.9	
DW: Superficies de rodadura	1.5	0.65	
EH: Presión de tierra horizontal activa	1.5	0.9	
EV: Presión de tierra vertical en estribos	1.35	1	

Tabla 5. Factores de carga para cargas permanentes. Fuente: Tabla 3.4.1-2 AASHTO LRFD

Tomaremos un factor de carga viva de 0.5 para el caso de Evento Extremo I, es decir, $\gamma EQ = 0.5$. Con respecto a este tema, en las especificaciones de la AASHTO se menciona que, si bien en ediciones pasadas la AASHTO consideraba $\gamma EQ = 0$, debería considerarse la posibilidad de la existencia de una carga viva parcial ($\gamma EQ < 1$) en simultáneo con el sismo. La AASHTO considera razonable un valor de $\gamma EQ = 0.5$.

CAPÍTULO III: DISEÑO DEL PUENTE

3.1 GEOMETRÍA

Para establecer las dimensiones del puente se realizó la redistribución de las vías de tránsito (plano) y a partir de ello se calcularon las medidas que debe tener el puente a diseñar.

La Figura 1 muestra una vista longitudinal del puente. Se deberá cubrir una luz libre de 72 m, que se dividirán en 3 luces de 22.5 m, 27 m y 22.5 m respectivamente. El gálibo será de 5.80 m.

Figura 12. Vista Longitudinal del Puente Fuente: Elaboración Propia

La Figura 12 muestra la sección transversal del puente. Se contará con 4 carriles de tránsito vehicular de 3.6 m de ancho cada uno (2 en cada sentido) y una berma central de 1.00 m de ancho siendo el ancho total del puente de 15.4 m.

Figura 13. Sección Transversal del Puente Fuente: Elaboración Propia

Se colocarán 7 vigas principales con un espaciamiento de 2.4 m y 2 diafragmas por cada luz de viga ubicados a cada tercio de su longitud.

3.2 DISEÑO DE LOSA DE TABLERO

Se usara el método aproximado de análisis para el diseño del tablero de hormigón armado sobre vigas Te, para una carga vehicular HL93, las vigas Te del tablero tienen una distancia de separación de 2400 mm de centro a centro y un ancho de alma de 400 mm el ancho de calzada 15400 mm de barrera a barrera. Tener en cuenta una capa de rodadura de 75 mm de espesor. Usar f'c = 28 Mpa y un fy = 410 Mpa

3.2.1. ESPESOR DEL TABLERO

El espesor mínimo para losas de tablero de concreto es de 175 mm según la AASHTO LRFD [A9.7.1]. La profundidad tradicional utilizada para tableros está basado sobre la longitud de tramo *S* para el control de deflexiones por la tabla 6.

Superestructura		Profundidad mínima (incluyendo el tablero) Si se utilizan elementos de profundidad variable, estos valores se pueden ajustar para considerar los cambios de rigidez relativa de las secciones de momento positivo y negativo.		
Material	Tipo	Tramos simples	Tramos continuos	
	Losas con armadura principal paralela al tráfico	<u>1,2(S+3000)</u> 30	$\frac{S+3000}{30} \ge 165 \text{ mm}$	
Hormigón Armado	Vigas T	0,070 <i>L</i>	0,065 <i>L</i>	
	Vigas cajón	0,060 <i>L</i>	0,055 <i>L</i>	
	Vigas de estructuras peatonales	0,035 <i>L</i>	0,033 <i>L</i>	
	Losas	0,030 <i>L</i> ≥ 165 mm	$0,027 L \ge 165 \text{ mm}$	
	Vigas cajón coladas in situ	0,045 <i>L</i>	0,040 <i>L</i>	
Hormigón Pretensado	Vigas doble T prefabricadas	0,045 <i>L</i>	0,040 <i>L</i>	
	Vigas de estructuras peatonales	0,033 <i>L</i>	0,030 <i>L</i>	
	Vigas cajón adyacentes	0,030 <i>L</i>	0,025 <i>L</i>	
	Profundidad total de una viga doble T compuesta	0,040 <i>L</i>	0,032 <i>L</i>	
Acero	Profundidad de la porción de sección doble T de una viga doble T compuesta	0,033 <i>L</i>	0,027 <i>L</i>	
	Cerchas	0,100 L	0,100 <i>L</i>	

Fuente: De las especificaciones AASHTO LRFD

Tabla 6. Profundidades mínimas utilizadas tradicionalmente parasuperestructuras de profundidad constante.

$$h_{min} = \frac{S + 3000}{30} = \frac{2400 + 3000}{30} = 180 \text{ mm}$$

Adoptamos como espesor estructural h=190 mm Entonces asumimos Espesor de tablero $h_s = 200 mm$ Espesor de volado $h_o = 230 mm$

3.2.2 PESO DE LOS COMPONENTES (CARGA MUERTA)

Para 1 mm de ancho de faja transversal:

Barrera exterior:

$$P_b = 2400 \ x \ 10^{-9} \frac{kg}{mm^3} * 9.81 \ \frac{N}{kg} * 315000 \ mm^2 = 7.42 \ N/m$$

Barrera central:

$$P_c = 2400 \ x \ 10^{-9} \frac{kg}{mm^3} * 9.81 \ \frac{N}{kg} * 200000 \ mm^2 = 4.71 \ N/m$$

Capa de rodadura:

$$W_{DW} = 2250 \ x \ 10^{-9} \frac{kg}{mm^3} * 9.81 \ \frac{N}{kg} * 75mm = 0.00166 \ N/mm^2$$

Losa tablero:

$$W_{S} = 2400 \ x \ 10^{-9} \frac{kg}{mm^{3}} * 9.81 \ \frac{N}{kg} * 200mm = 0.00471 \ N/mm^{2}$$

Losa volado:

$$W_0 = 2400 \ x \ 10^{-9} \frac{kg}{mm^3} * 9.81 \ \frac{N}{kg} * 230mm = 0.00542 \ N/mm^2$$

3.2.3.1 MOMENTOS FLECTORES POR SOBRECARGA

Para este puente el método de análisis aproximado en el cual el tablero se subdivide en fajas perpendiculares a los componentes de apoyo es aceptable.

- En este método de las fajas el momento extremo positivo de cualquier panel de tablero entre vigas se considerara actuando en todas las regiones de momento positivo y de manera similar el momento extremo negativo según AASHTO LRFD [A. 4.6.2.1].
- Las fajas se deberán tratar como fajas continuas, la longitud de tramo se deberá tomar como la distancia entre centros de los componentes de apoyo.
- Para determinar las solicitaciones en la faja se deberá suponer que los componentes de apoyo son infinitamente rígidos.

Para aplicación de los factores de carga, los momentos flectores serán determinados por separado y mediante la utilización del programa SAP 2000:

Losa tablero

Fuente: elaboración propia

Figura 16. Cuadro de resumen por la carga " W_S ". Fuente: Elaboración propia

 $R_B = 4.46 N$

 $M_{960} = 2112.02 N - mm$ (El máximo momento positivo se dio a 960 mm desde el apoyo B entonces llamaremos al momento M_{960} $M_C = -2858.84 N - mm$

Fuente: elaboración propia

Case DEAD ▼ End Length Offset (Location 1.5, 1.5, 2.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1	n) Display Options C Scroll for Values C Show Max
Equivalent Loads - Free Body Diagram (Concentrated Forces in N, Concentrated Mor	nents in N-mm)
2987.77 790.35 1.57 1.57	Dist Load (2-dir) 0.00 N/mm at 2400.00 mm Positive in -2 direction
Resultant Shear	Shear V2 -1.57 N at 2400.00 mm
Resultant Moment	Moment M3 -2987.77 N-mm at 0.00 mm
C Absolute C Relative to Beam Minimum	Deflection (2-dir) -0.000516 mm at 960.00 mm Positive in -2 direction

 $R_B = 7.27 N$ $M_B = -2987.77 N - mm$ $M_{960} = -1476.53 N - mm$ $M_C = 790.35 N - mm$

Figura 20. Carga muerta de barreras " P_B ".

Figura 21. Momentos debido a la " P_B ".

Fuente: elaboración propia

	0.000 mm (0.00 mm) J-End: Jt: 3 0.000 mm (2400.00 mm)
Equivalent Loads - Free Body Diagram (Concentrated 5713.40 5713.40 5.01	Forces in N, Concentrated Moments in N-mm) 15/11.34 0.00 N/mm at 2400.00 mm Positive in -2 direction
Resultant Shear	-3.01 N at 2400.00 mm
Resultant Moment	Moment M3 -5713.40 N-mm at 0.00 mm
C Absolute C Relative to Beam Minimum	Output Deflection (2-dir) -0.000986 mm at 960.00 mm Positive in -2 direction Relative to Beam Ends

Figura 22. Cuadro de resumen por la carga " P_B ". Fuente: elaboración propia

Capa de rodadura

Figura 23. Carga muerta capa de rodadura " W_{DW} ".

Fuente: elaboración propia

Fuente: elaboración propia

 $R_B = 2.51 N$ $M_B = -207.51 N - mm$ $M_{960} = 641.81 N - mm$ $M_C = -952.68 N - mm$

3.2.3 SOBRECARGA VEHICULAR (CARGA VIVA)

Consideraciones Generales:

El tablero es diseñado usando el método de análisis aproximado según AASHTO LRFD [A 4.6.2.1]. El camión o tándem de diseño se deberá ubicar transversalmente de manera que ninguno de los centros de las cargas de rueda este a menos de [A3.6.1.3.1]:

 Para el diseño del tablero = 300 mm a partir de la cara del cordón o baranda. Para el diseño de todos los demás componentes = 600 mm a partir del borde del carril de diseño.

El ancho de las fajas equivalentes interiores para hormigón colado in situ se puede tomar como se especifica en la Tabla 7:

TIPO DE TABLERO	DIRECCIÓN DE LA FAJA PRIMARIA EN RELACIÓN CON EL TRÁFICO	ANCHO DE LA FAJA PRIMARIA (mm)	
Hormigón:			
Colado in situ	Vuelo	1140 + 0,833X	
	Paralela o perpendicular	+M: 660 + 0,55S	
		-M: 1220 + 0,25S	
 Colado in situ con encofrados perdidos 	Paralela o perpendicular	+M: 660 + 0,55S	
		-M: 1220 + 0,25 <i>S</i>	
 Prefabricado, postesado 	Paralela o perpendicular	+M: 660 + 0,55S	
		-M: 1220 + 0,25 <i>S</i>	

Fuente: De las especificaciones AASHTO LRFD Tabla 7. Fajas equivalentes.

Siendo: S= Separación de los elementos de apoyo (mm) X= Distancia entre la carga y el punto de apoyo (mm)

El área de contacto de los neumáticos de una rueda compuesta por uno o dos neumáticos se deberá considerar como un único rectángulo de 510 mm de ancho y 250 mm de longitud según AASHTO LRFD [A3.6.1.2.5]. Las cargas de las ruedas se pueden modelar como cargas concentradas o como cargas distribuidas en un área cuya longitud en la dirección paralela al tramo es igual al área de contacto de los neumáticos como se especifica según AASHTO LRFD [A 3.6.1.2.5] más la profundidad del tablero según AASHTO LRFD [A 4.6.2.1.6] Número de carriles:

$$N_L = \frac{W_C}{3600} = \frac{15400}{3600} = 4 \ carriles$$

Factor de presencia múltiple "*m*" tabla 8.

Número de carriles cargados	Factor de presencia múltiple, <i>m</i>
1	1,20
2	1,00
3	0,85
> 3	0,65

Tabla 8. Factor de presencia múltiple (m). Fuente: De las especificaciones AASHTO LRFD

El factor de presencia múltiple es 1.2 para un carril cargado y 0.85 para tres carriles cargados.

3.2.3.1 Momento negativo por carga viva en el volado:

 $E = 1140 + 0.833(X) = 1140 + 0.833(200) = 1306.60 \cong 1310 \ mm$

$$M_B = \frac{-1.2(72.5 * 10^3)(200)}{1310} = -13282.44 \text{ N. } mm = -13.28 \text{ Kn. } mm$$

3.2.3.2 Momento positivo por carga viva

Un carril cargado

El máximo momento positivo se da en la posición M_{960} que es a 960 mm del apoyo exterior. Los esfuerzos se determinaron utilizando el programa SAP2000, el ancho equivalente para ambos casos uno y tres carriles cargados determinado es:

Fuente: elaboración propia

 $R_B = 19.90 N$ $M_{960} = 19105.88 N - mm$

Tres carriles cargados

$$E = 660 + 0.55(S) = 660 + 0.55(2400) = 1980 mm$$

 $P = 72.5 Kn m = 0.85$

Figura 31. Cuadro de resumen por la carga " W_{LL-3} ". Fuente: elaboración propia

 $R_B = 20.69 N$ $M_{960} = 19866.43 N - mm$

La mayor reacción y el mayor momento flector están gobernados por tres carriles cargados.

$$R_B = 20.69 N$$

 $M_{960} = 19866.43 N - mm$

3.2.3.3 Máximo momento negativo interior por carga viva

La ubicación critica para un máximo momento negativo por carga viva esta sobre el primer soporte interior del tablero como se muestra, con un factor de presencia múltiple m = 1.2 y un ancho de faja equivalente de:

$$E = 1220 + 0.25(S) = 1220 + 0.25(2400) = 1820 mm$$

 $P = 72.5 Kn m = 1.2$

$$W = \frac{m * P}{E} = \frac{1.2 * 72.5 * 10^3}{1820} = 47.80 \, N/mm$$

Fuente: elaboración propia

Figura 33. Momentos debido a la " W_{LL-1} ". Fuente: elaboración propia

Case DEAD Items Major (V2 and M3) Single valued JEnd Length Offset (Location U.000 mm U.000 mm J-End Jt: 2 0.000 mm U.000 mm (2000 mm (2000 mm)	n) - Display Options C Scroll for Values Show Max
Equivalent Loads - Free Body Diagram (Concentrated Forces in N, Concentrated Mon 47.80 20655.10 20655.40 20654.48	ments in N-mm) Dist Load (2-dir) 0.00 N/mm at 2400.00 mm Positive in -2 direction
Resultant Shear	Shear V2 38.48 N at 2400.00 mm
Resultant Moment	Moment M3 -20655.10 N-mm at 2400.00 mm
C Absolute C Belative to Ream Minimum C Belative to Ream Ends	Deflection (2-dir) 0.003031 mm at 1000.00 mm Positive in -2 direction

 $M_C = -20655.10 N - mm$

3.2.3.4 Máxima reacción exterior por carga viva

La carga de la rueda está ubicada a 300 mm de la cara de la barrera, el ancho equivalente es la misma que la del volado:

$$E = 1140 + 0.833(X) = 1140 + 0.833(200) = 1306.60 \approx 1310 \, mm$$

$$P = 72.5 \ Kn \ m = 1.2$$

$$W = \frac{m * P}{E} = \frac{1.2 * 72.5 * 10^3}{1310} = 66.41 \ N/mm$$

$$W = \frac{m * P}{E} = \frac{1.2 * 72.5 * 10^3}{1310} = 66.41 \ N/mm$$
Figura 35. Carga viva un carril cargado "W_{LL-1}".
Fuente: elaboración propia
$$W_{LL-1}$$
Figura 36. Reacciones debido a la "W_{LL-1}".
Fuente: elaboración propia
$$R_B = 89.00 \ N$$

3.2.4 ESTADO LÍMITE DE RESISTENCIA

Las combinaciones de carga pueden ser tomadas de las tablas 9, 10 y 11. [1]

$$Q=\sum n_i\,\gamma_i Q_i$$

1,00 para diseños y detalles convencionales que cumplen con estas Especificaciones.

$$n_D = 1.00$$

1,00 para niveles convencionales de redundancia.

$$n_{R} = 1.00$$

1,00 para puentes típicos.

$$n_I = 1.00$$

Entonces "n":

$$n_I = 1.00 * 1.00 * 1.00 = 1.00$$

Ahora por la tabla:

Tipo de carga	Factor de Carga		
Tipo de carga	Máximo	Mínimo	
DC: Elemento y accesorios	1,25	0,90	
DD: Fricción negativa (downdrag)	1,80	0,45	
DW: Superficies de rodamiento e instalaciones para servicios públicos	1,50	0,65	
<i>EH</i>: Empuje horizontal del sueloActivoEn reposo	1,50 1,35	0,90 0,90	
EL: Tensiones residuales de montaje	1,00	1,00	
 EV: Empuje vertical del suelo Estabilidad global Muros de sostenimiento y estribos Estructura rígida enterrada Marcos rígidos Estructuras flexibles enterradas u otras, excepto alcantarillas metálicas rectangulares Alcantarillas metálicas rectangulares flexibles 	1,00 1,35 1,30 1,35 1,95 1,50	N/A 1,00 0,90 0,90 0,90 0,90	
ES: Sobrecarga de suelo	1,50	0,75	

Fuente: De las Especificaciones AASHTO LRFD

Tabla 9. Factores de carga para cargas permanentes, γ_P

Para elementos y accesorios (DC); $\gamma_P = 1.25$

Para superficies de rodamiento	o (DW);	$\gamma_P =$	1.50
--------------------------------	---------	--------------	------

Combinación de Cargas	DC DD DW	LL IM			-					Usa	r sólo ı	mo por	vez
Date de T (avita	EH EV ES	CE BR PL	WA	WS	WT	FR	TU CR SH	TG	SF	FO	K	OT	CIV
Estado Limite	LL	2.5	"A	"5	""	PA	511	10	52	LŲ	<i>I</i> C	CI	CV
RESISTENCIA I (a menos que se especifique lo contrario)	γ _p	1,75	1,00	-	-	1,00	0,50/1,20	Ϋтө	γse	-	-	-	-
RESISTENCIA II	γp	1,35	1,00	-	-	1,00	0,50/1,20	γtg	γse	-	-	-	-
RESISTENCIA III	γ _p	-	1,00	1,40	-	1,00	0,50/1,20	γ _{tg}	γ_{SE}	-	-	-	-
RESISTENCIA IV – Sólo <i>EH, EV, ES, DW, DC</i>	γ _p 1,5	-	1,00	-	-	1,00	0,50/1,20	-	-	-	-	-	-
RESISTENCIA V	γp	1,35	1,00	0,40	1,0	1,00	0,50/1,20	γtg	γse	-	-	-	-
EVENTO EXTREMO I	γp	γeq	1,00	-	-	1,00	-	-	-	1,00	-	-	-
EVENTO EXTREMO II	γ_p	0,50	1,00	-	-	1,00	-	-	-	-	1,00	1,00	1,00
SERVICIO I	1,00	1,00	1,00	0,30	1,0	1,00	1,00/1,20	γ _{tg}	γ_{SE}	-	-	-	-
SERVICIO II	1,00	1,30	1,00	-	-	1,00	1,00/1,20	-	-	-	-	-	-
SERVICIO III	1,00	0,80	1,00	-	-	1,00	1,00/1,20	γ_{TG}	γ_{SE}	-	-	-	-
SERVICIO IV	1,00	-	1,00	0,70	-	1,00	1,00/1,20	-	1,0	-	-	-	-
FATIGA - Sólo LL, IM y CE	-	0,75	-	-	-	-	-	-	-	-	-	-	-

Fuente: De las Especificaciones AASHTO LRFD

Tabla 10. Combinaciones de cargas y factores de carga.

Para la sobrecarga vehicular (LL); $\gamma_P = 1.75$

Componente	IM
Juntas del tablero - Todos los Estados Límites	75%
Todos los demás componentes	
 Estado Límite de fatiga y fractura 	15%
 Todos los demás Estados Límites 	33%

Fuente: De las Especificaciones AASHTO LRFD Tabla 11. Incremento por carga dinámica, IM.

Entonces para la carga dinámica el IM sería 1.33

Lo cual resultaría

$$Q = \sum n_i \gamma_i Q_i = 0.95 [1.25 M_{DC} + 1.50 M_{DW} + 1.75 M_{LL+IM}]$$

Calculamos

En apoyo B:

$$M_B = 1.00[1.25(-2987.77 - 5713.40) + 1.50(-207.51) + 1.75 * 1.33$$
$$* (-13282.44)]$$
$$M_B = -42.10 \text{ Kn. mm}$$

En la distancia donde el momento máximo a 960 mm.

$$M_{960} = 1.00[1.25(2112.02 - 1476.53 - 2823.50) + 1.50(641.81) + 1.75$$
$$* 1.33 * (19866.43)]$$
$$M_{960} = 44.47 \ Kn. \ mm$$

La sección de diseño para momento negativo se puede tomar sobre el siguiente criterio:

Para construcciones monolíticas de hormigón en la cara del componente del apoyo según AASHTO LRFD [A4.6.2.1.6].

Los valores para las cargas como se muestra son para 1 mm de faja de ancho calculados separadamente. La carga concentrada de rueda es para un carril cargado.

$$E = 1140 + 0.833(X) = 1140 + 0.833(200) = 1306.60 \approx 1310 mm$$
$$P = 72.5 Kn \quad m = 1.2$$

$$W = \frac{m * P}{E} = \frac{1.2 * 72.5 * 10^3}{1310} = 66.41 \, N/mm$$

Figura 37. Esquema para análisis de momentos. Fuente: elaboración propia

Losa de tablero

$$M_S = -\frac{1}{2} * 0.00471 * 200^2 + 4.46 * 200$$
$$M_S = 797.80 N - mm$$

Losa del volado

$$M_o = -0.00542 * 900 * (\frac{900}{2} + 200) + 7.27 * 200$$
$$M_o = -1716.70 N - mm$$

Barrera

$$M_b = -7.42 * (900 + 200 - 127) + 10.43 * 200$$
$$M_b = -5133.66 N - mm$$

Capa de rodadura

$$M_{DW} = -\frac{1}{2} * 0.00166 * (900 + 200 - 400)^2 + 2.51 * 200$$
$$M_{DW} = 103.30 N - mm$$

Carga viva

$$M_{LL} = -66.41 * 400 + 89.00 * 200$$

$$M_{LL} = -8764.00 N - mm$$

Estado límite de resistencia

$$\begin{split} M_{neg.} &= 1.00 [1.25(797.80 - 1716.70 - 5133.66) + 1.50(103.30) + 1.75 \\ &\quad * 1.33 * (-8764.00)] \\ M_{neg.} &= -27.81 \ Kn - mm \end{split}$$

3.2.5 DISEÑO DE ACERO ESTRUCTURAL

3.2.5.1. SELECCIÓN DE REFUERZO

Recubrimiento para las armaduras principales no protegidas Tabla 12

STELLOTÓN	RECUBRIMIENTO				
SITUACION	(mm)				
Exposición directa al agua salada	100				
Hormigonado contra el suelo	75				
Ubicaciones costeras	75				
Exposición a sales anticongelantes	60				
Superficies de tableros con tránsito de neumáticos con clavos o cadenas	60				
Otras situaciones exteriores	50				
Otras situaciones interiores					
 Hasta barras No. 36 	40				
 Barras No. 43 y No. 57 	50				
Fondo de losas hormigonadas in situ					
 Hasta barras No. 36 	25				
 Barras No. 43 y No. 57 	50				
Encofrados inferiores para paneles prefabricados	20				
Pilotes prefabricados de hormigón armado					
 Ambientes no corrosivos 	50				
 Ambientes corrosivos 	75				
Pilotes prefabricados de hormigón pretensado	50				
Pilares hormigonados in situ					
 Ambientes no corrosivos 	50				
 Ambientes corrosivos 					
- En general	75				
- Armadura protegida	75				
Cáscaras	50				
 Hormigón colocado con lodo bentonítico, hormigón colocado por el sistema tremie o construcción con lechada 	75				

(mm).

Fuente: De las especificaciones AASHTO LRFD

Ubicaciones costeras 75 mm Losas hormigonadas in situ 25 mm

Asumimos barra $\phi^5/_8$ ${}^{\prime\prime}$ su diámetro =15.9 mm

$$d_{pos} = 200 - 10 - 25 - \frac{15.9}{2} = 157.05 \ mm$$

$$d_{neg} = 200 - 75 - \frac{15.9}{2} = 117.05 \, mm$$

3.2.5.2. Armadura para el momento positivo

$$M_U = M_{960} = 44.47 \ Kn - mm$$
 $d_{pos} = 157.05 \ mm$

El mínimo momento último M_U depende del momento de fisuración

$$M_{cr} = S_{nc} * f_r$$

$$S_{nc} = \frac{1}{6}bh^2 = \frac{1}{6}1 * 200^2 = 6666.7 \ mm^3$$

$$f_r = 0.97 * \sqrt{28} = 5.13$$

$$M_{cr} = 6666.7 * 5.13 = 34.20 \ Kn - m$$

El momento último M_U , como mínimo igual al menor valor entre:

$$1.2M_{cr} = 1.2 * 34.20 = 41.04 Kn - m$$

o $1.33M_U = 1.33 * 44.47 = 59.15 Kn - m$

Por consiguiente el menor momento último es:

 $M_U = 41.04 \ Kn. \ m \quad b = 1 \ m \ d = 0.15705 \ m$

$$\rho = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mk}{\varphi \mathrm{fy}}}\right)$$

$$k = \frac{M_U}{bd^2} = \frac{41.04}{1*0.15705^2} = 1663.92 \ Kn/m^2$$
$$m = \frac{fy}{0.85 \ f'c} = \frac{420}{0.85 * 28} = 17.65$$
$$\rho = \frac{1}{17.65} \left(1 - \sqrt{1 - \frac{2*17.65*1663.92}{0.85*4200*0.00981*100^2}} = 0.00497$$
$$A_S = \rho * b * d = 0.00497 * 100 * 15.705 = 7.81 \ cm^2$$

Con barras $\varphi^5/_8$ ($A_s = 1.99cm^2$) entonces por 4 $As_{pos} = 7.96 cm^2$

• Revisar la ductibilidad

$$a = \frac{A_S f y}{0.85 \ f' c \ b} = \frac{7.96 * 420}{0.85 * 28 * 100} = 1.40 \ cm$$
$$a \le 0.36 * 15.705 = 5.65 \ es \ conforme \ OK$$

• Revisar momento resistente

$$\Phi Mn = \Phi A_s fy \left(d - \frac{a}{2} \right) = 0.90 * 7.96 * 4200 * \left(15.705 - \frac{1.40}{2} \right)$$
$$= 451482.44 \ kg - cm$$

$$44.29 Kn - m > 41.06 Kn - m \quad es \ conforme \ OK$$

Entonces se escogen barras 1 $\phi^5/_8 \, {}^{\prime\prime}$ @ 0.25 m.

3.2.5.3 Armadura para el momento negativo

$$M_{neg} = -27.81 \ Kn. mm$$
 $d_{neg} = 117.05 \ mm$

El mínimo momento último M_U depende del momento de fisuración $M_{cr} = S_{nc} * f_r$

$$S_{nc} = \frac{1}{6}bh^2 = \frac{1}{6}1 * 200^2 = 6666.7 \ mm^3$$
$$f_r = 0.97 * \sqrt{28} = 5.13$$
$$M_{cr} = 6666.7 * 5.13 = 34.20 \ Kn - m$$

El momento último M_U , como mínimo igual al menor valor entre:

$$1.2M_{cr} = 1.2 * 34.20 = 41.04 Kn - m$$

o $1.33M_U = 1.33 * 27.81 = 36.99 Kn - m$

Por consiguiente el menor momento último es:

 $M_U = 36.99 \ Kn - m$ $b = 1 \ m$ $d = 0.11705 \ m$

$$\rho = \frac{1}{m} \left(1 - \sqrt{1 - \frac{2mk}{\varphi \mathrm{fy}}}\right)$$

$$k = \frac{M_U}{bd^2} = \frac{36.99}{1 * 0.11705^2} = 2699.86 \ Kn/m^2$$

$$m = \frac{fy}{0.85 f'c} = \frac{420}{0.85 * 28} = 17.65$$

$$\rho = \frac{1}{17.65} \left(1 - \sqrt{1 - \frac{2 * 17.65 * 2699.86}{0.85 * 4200 * 0.00981 * 100^2}} = 0.0083$$

$$A_S = \rho * b * d = 0.0083 * 100 * 11.705 = 9.74 \ cm^2$$

Con barras $\varphi^5/_8$ " ($A_s = 1.99cm^2$) entonces por 5 $As_{pos} = 9.95 cm^2$

• Revisar la ductibilidad

$$a = \frac{A_s f y}{0.85 \ f' c \ b} = \frac{9.95 * 420}{0.85 * 28 * 100} = 1.76 \ cm$$

$$a \le 0.36 * 15.705 = 5.65 \ es \ conforme \ OK$$

• Revisar momento resistente

$$\Phi Mn = \Phi A_S fy \left(d - \frac{a}{2} \right) = 0.90 * 9.95 * 4200 * \left(11.705 - \frac{1.76}{2} \right)$$
$$= 407139.08 \, kg - cm$$

39.94 Kn - m > 36.99 Kn.m es conforme OK

Entonces se escogen barras 1 $\varphi^5/_8$ " @ 0.20 m.

3.2.5.4 Acero de distribución

Según la norma AASHTO LRFD:

En la parte inferior de las losas se deberá disponer armadura en la dirección secundaria; esta armadura se deberá calcular como un porcentaje de la armadura principal para momento positivo según AASHTO LRFD [A.9.7.3.2]:

En nuestro caso la armadura principal es perpendicular al tráfico, por lo tanto utilizaremos 67%.

Entonces el acero por distribución es:

$$A_S = 0.67 * A_S = 0.67 * 9.95 = 6.70 \ cm^2$$

Con barras $\varphi^1/_2$ " ($A_s = 1.29cm^2$) 1 $\varphi^1/_2$ " @ 0.20 m.

3.2.5.5 Armadura por contracción y temperatura

La armadura para contracción y temperatura, el área de la armadura en cada dirección deberá satisfacer. El acero se deberá distribuir uniformemente en ambas caras:

$$A_S \ge 0.75 \frac{A_g}{fy}$$

Dónde:

 A_g = área bruta de la sección (mm2)

fy = tensión de fluencia especificada de las barras de armadura (MPa)

$$A_S = 0.75 \frac{1000 * 200}{420} = 3.57 \ cm^2$$

Para una sola cara

$$A_S = \frac{1}{2} * 3.57 = 1.79 \ cm^2$$

Con barras $\varphi^3/_8$ " ($A_s = 0.71 \ cm^2$) 1 $\varphi^3/_8$ " @ 0.33 m.

3.2.6 Limitación de la fisuración mediante distribución de la armadura

Según la norma AASHTO LRFD:

El estado límite de Servicio I investiga el ancho de fisuración de las estructuras de hormigón armado [A.3.4.1].
El momento usado para calcular el esfuerzo de tracción en la armadura es:

$$M = M_{DC} + M_{DW} + 1.33M_{LI}$$

La fisuración es controlada por los límites de la separación de la armadura bajo cargas de servicio.

Separación Máxima:

$$S = \frac{123000}{\beta_S f s} \gamma_e - 2 d_c$$
$$\beta_S = 1 + \frac{d_c}{0.7(h - d_c)}$$
$$\gamma_e = 0.75$$

 d_c = espesor del recubrimiento de hormigón medido desde la fibra extrema traccionada hasta el centro de la barra o alambre ubicado más próximo a la misma (mm)

La relación entre el esfuerzo del acero y el esfuerzo en el concreto es:

$$fs = nfc = n\frac{M.(d-x)}{I_{cr}}$$

Relación de módulos acero y concreto

$$n = \frac{2.1x10^6}{2.8x10^7} = 7.5 \cong 7$$

3.2.6.1 Revisar la armadura para el momento positivo

Momento Positivo para Servicio I:

M = 1(2112.02 - 1476.53 - 2823.50) + 1(641.81) + 1 * 1.33 * 19866.43= 24.88 Kn - m

Figura 39. Bloque de la sección transversal de losa. Fuente: elaboración propia

Ubicación del eje neutro(x) de la sección fisurada:

$$\frac{1}{2}bx^2 = nA_S'(d'-x) + nA_S(d_{pos} - x)$$
$$\frac{1}{2}100 * x^2 = 7 * 9.95(7.2 - x) + 7 * 7.96(15.705 - x)$$
$$x = 4.14 \ cm$$

Momento de inercia de la sección fisurada:

$$I_{cr} = \frac{1}{3}bx^3 + A_s'n(d'-x)^2 + nA_s(d_{pos}-x)^2$$
$$I_{cr} = \frac{1}{3}100 * 4.14^3 + 7 * 9.95(7.2 - 4.14)^2 + 7 * 7.96(15.705 - 4.14)^2$$
$$I_{cr} = 10030.90 \ cm^4$$

 $M = 24880000 \, N.\,mm \quad I_{cr} = 100309006.17 \, mm^4 \ d_{pos} = 157.05 \, mm$

$$fs = n \frac{M.(d-x)}{I_{cr}} = 7 * \frac{24880000.(157.05 - 41.4)}{100309006.17} = 200.80 N/mm^2$$
$$\beta_S = 1 + \frac{d_c}{0.7(h-d_c)} = 1 + \frac{33}{0.7(200 - 33)} = 1.28 \approx 1.30$$
$$S \le \frac{12300}{\beta_S f_S} \gamma_e - 2 d_c = \frac{123000}{1.30 * 200.80} 0.75 - 2 * 33 = 287 mm$$

$$250 \leq 287 \ es \ conforme \ OK$$

3.2.6.2 Revisar la armadura para el momento positivo

Momento Negativo para Servicio I:

$$M = 1.00[1.00(797.80 - 1716.70 - 5133.66) + 1.00(103.30) + 1.00 * 1.33$$
$$* (-8764.00)] = -17.61 Kn - m$$

Ubicación del eje neutro(x) de la sección fisurada:

$$\frac{1}{2}bx^{2} + (n-1)A_{Spos}(x-d') = nA_{Sneg}(d_{neg} - x)$$
$$\frac{1}{2} * 100 * x^{2} + (7-1)7.96(x-3.3) = 7 * 9.95(11.705 - x)$$
$$x = 3.39 \ cm$$

Momento de inercia de la sección fisurada:

$$I_{cr} = \frac{1}{3}bx^3 + A_s'n(d'-x)^2 + nA_s(d_{pos}-x)^2$$
$$I_{cr} = \frac{1}{3}100 * 3.39^3 + 7 * 7.96(3.3 - 3.39)^2 + 7 * 9.95(11.705 - 3.39)^2$$
$$I_{cr} = 6114.60 \ cm^4$$

 $M = 17610000 \ N.mm \quad I_{cr} = 61146056.53 \ mm^4 \ \ d_{neg} = 117.05 \ mm$

$$fs = n \frac{M.(d-x)}{I_{cr}} = 7 * \frac{17610000.(117.05 - 33.9)}{61146056.53} = 167.63 N/mm^2$$

$$\beta_{S} = 1 + \frac{d_{c}}{0.7(h - d_{c})} = 1 + \frac{33}{0.7(200 - 33)} = 1.28 \approx 1.30$$
$$S \le \frac{12300}{\beta_{S} f_{S}} \gamma_{e} - 2 d_{c} = \frac{123000}{1.30 * 167.63} 0.75 - 2 * 33 = 463 mm$$

$$200 \leq 357 \ es \ conforme \ OK$$

Figura 41. Esquema corte transversal de la losa armada. Fuente: elaboración propia

3.3 DISEÑO DE VIGAS TE DE CONCRETO ARMADO

3.3.1 DESARROLLO GENERAL DE LA SECCIÓN

El puente lleva tráfico interdepartamental sobre una corriente normalmente pequeña que está sujeto a grandes flujos de agua durante la estación de lluvias.

3.3.2 DESARROLLAR LA SECCIÓN TÍPICA

3.3.2.1 Espesor del ala superior [A5.14.1.3.1a]

El espesor de las alas superiores que trabajan como losa de tableros debería ser:

- Como se determina en la sección 9 [A9.7.1.1]
 - Altura mínima de tablero de hormigón = 175 mm
 - Diseño del tablero de, espesor estructural = 190 mm
- Máximo tramo libre= 20(200)= 4000 mm > 2400 mm

3.3.2.2 Espesor de ala inferior: No aplicable a vigas T.

3.3.2.3 Espesor del alma [A5.14.1.3.1c]

-Espesor de alma mínimo 200 mm, sin vainas de pretensado.

-Mínimo recubrimiento de hormigón para armaduras principales 50 mm.

-Tres barras de D 36 en una fila requiere un ancho de viga [A5.10.3.1.1]

*b*min =2(50)+3db+2(1.5db) *b*min =2(50)+3(25.4)+2(1.5*25.4)= 315 mm

-Dar a las barras un espaciamiento extra, Probar bw= 400 mm

3.3.2.4 Profundidad de la superestructura [Tabla A2.5.2.6.3-1]

Profundidad mínima para tramos continuos = 0.0065L

3.3.2.5 Límites de la Armadura

-Losa prolongada: como mínimo 1/3 de la capa inferior de la armadura transversal [A5.14.1.3.2a]

-Armadura mínima: debería adecuarse para desarrollar el mínimo de $\phi Mn > 1.2Mcr \circ \phi Mn > 1.33Mcr$ veces el momento mayorado requerido para los estados límites de resistencia I [A5.7.3.3.2]

Mcr = Snc.fr

$$fr = 0.97\sqrt{fc} = 0.97\sqrt{28} = 5.133 MPa$$
 [A5.4.2.6]

-Control de la fisuración: La fisuración es controlado por los límites de separación de la armadura bajo carga de servicio. [A5.7.3.4]

$$s \leq \frac{12300}{Bsfs} \cdot \gamma e - 2dc$$
$$Bs = 1 + \frac{dc}{0.7(h - dc)}$$

-Tracción en las alas en el estado límite de servicio.

La armadura por tracción debería estar distribuida en una distancia igual al menor de:

El ancho del ala efectivo.

Un ancho igual a 1/10 del promedio de los tramos adyacentes [A4.6.2.6, A5.7.3.4]

-Armadura longitudinal superficial se requiere si la profundidad del alma de > 900 mm

-Armadura de compresión y temperatura [A5.10.8.2]

$$As \ge 0.75 \frac{Ag}{fy}$$

3.3.2.6 Ancho de ala efectiva [A4.6.2.6]

-Longitud de tramo efectivo para tramos continuos es igual a la distancia entre puntos de inflexión por cargas permanentes.

Las dimensiones de las secciones de prueba para el puente Viga T están mostradas en la figura 6.7-3

3.3.2.7 Áreas de bielas y tirantes [A5.6.3] No aplicable

La sección a tratar para el puente viga T esta mostrada en la figura 42.

Figura 42. Dimensiones de prueba para el puente viga Te

Fuente: Elaboración Propia

3.3.3 Selección de factores de Resistencia [A5.5.4.2]

3.3.3.1 Estado Limite de Resistencia	Ø	[A5.5.4.2]
Flexión y tracción	0.90	
Cortante y Torsión	0.90	

Compresión Axial	0.75
Apoyos	0.70

3.3.3.2 Para otros estados Limites 1 [/	[A1.3.2.1]
---	------------

3.3.4 Seleccionar modificadores de carga [A1.3.2.1]

	Resistencia	Servicio	Fatiga	
Ductilidad η	1	1	1	A1.3.3
Redundancia η	1	1	1	A1.3.4
Importancia η	1	-	-	A1.3.5
η = η =η =η	1	1	1	

3.3.5 Seleccionar las combinaciones de carga y los factores aplicables.

Estado Limite de Resistencia I n=n= 1.0

U = n[1.25DC +1.50DW+1.75(LL + IM)+1.0(WA+FR)+...]

Estado Límite de Servicio I

U = 1.0(DC + DW) + 1.0(LL + IM) + 1.0WA + 0.3(WS + WL) + ...]

Estado Límite de Fatiga

3.3.6 Calcular las solicitaciones debida a sobrecargas

3.3.6.1 Selección del número de carriles [A3.6.1.1.1]

$$Nc = ENT(\frac{W}{3600}) = ENT(\frac{15400}{3600}) = 4$$

3.3.6.2 Presencia Múltiple [A3.6.1.1.2]

Nº de Carriles Cargados	m
1	1.20
2	1.00
3	0.85
4	0.65

3.3.6.3 Incremento por Carga Dinámica [A3.6.2.1] No se aplica al carril de diseño

Componente	IM
Juntas de Tablero	75%
Fatiga	15%
Otros Estados	33%

3.3.6.4 Factores de Distribución para Momento: [A4.6.2.2.2]

Aplicable al [A4.6.2.2.1]

-Ancho de tablero constante

-Número de vigas no es menor a cuatro, las vigas son paralelas y tienen aproximadamente la misma rigidez

- La parte del vuelo correspondiente a la calzada dx no es mayor que 910 mm

D= 1050-400=650 < 910 mm OK

Sección Transversal Tipo (e) ver [Tabla A4.6.2.2.1-1] N° de vigas Nb = 7Profundidad de losa de hormigónt1=200 mm Separación entre vigas o almas S= 2400 mm Longitud de tramo de la viga L1=L3 = 22500; L2= 27000

3.3.6.4.1 Vigas Interiores con tablero de Concreto [A4.6.2.2.2b] y [Tabla 4.6.2.2.2b-1]

Para un diseño preliminar considerar y $\frac{I}{J} = 1.0$

Un carril de diseño cargado:

$$mg_M^{SI} = 0.06 + \left(\frac{S}{4300}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{kg}{12Lt_s^3}\right)^{0.1}$$

Donde:

mg = Factor de distribución con factor de presencia múltiple SI = Único Carril Cargado, Interior MI = Múltiples Carriles Cargados M = Momento

Dos o más carriles de diseño cargados:

$$mg_M^{MI} = 0.075 + \left(\frac{S}{2900}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{kg}{12Lt_s^3}\right)^{0.1}$$

$$K_g = n(I + Ae_g^2)$$

Siendo:

 $n = E_B/E_D$ $E_B = Módulo de elasticidad del material de la viga$ $E_D = Módulo de elasticidad del material de la losa$ I = Momento de inercia de la vigaA = Årea de la viga

 e_g = Distancia entre los centros de gravedad de la viga y la losa (mm)

Área (A) de la sección

$$A = 400(1600) + 2100(200) = 1060000 \ mm^2$$

Determinación del centro de gravedad:

$$x = \frac{400(1600)(800) + 2100(200)(1700)}{(400)(1600) + 2100(200)} = 1156.60 \, mm$$

Determinación de la inercia

$$I = \frac{1}{12} (400)(1600)^3 + (400)(1600)(1156.60 - 800)^2 + \frac{1}{12} (2100)(200)^3 + 2100(200)(1700 - 1156.60)^2 = 34.34 \times 10^{10} \ mm^4$$

 $e_g = 1700 - 1156.60 = 543.4 \, mm$

$$K_g = n(I + Ae_g^2) = 1(34.34x10^{10} + 1060000(543.4)^2)$$

 $K_g = 6.56x10^{11}$

Factor de Distribución	L1= 22500	Lprom = 24750	L2=27000
mg_M^{SI}	0.521	0.503	0.488
mg_M^{MI}	0.724	0.706	0.690

Para las vigas interiores los factores de distribución son gobernados por los múltiples carriles.

3.3.6.4.2 Vigas Exteriores [A4.6.2.2.2d] y [Tabla 4.6.2.2.2d-1]

Un carril de diseño cargado: Ley de momentos m=1.2 Ver fig 6.7-4

$$2400R - 0.5(2300)P - 0.5(500)P = 0$$
$$R = 0.5P\left(\frac{2300 + 500}{2400}\right) = 0.583P$$

Definición ley de momentos

Dos o más carriles de diseño cargados de = 500 mm

 $mg_M^{ME} = emg_M^{MI}$ ME=Múltiples carriles cargados, Exterior

Donde:

$$e = 0.77 + \frac{de}{2800} = 0.77 + \frac{500}{2800} = 0.95 < 1.0$$
 Usar e= 1.0

Para múltiples carriles cargados

$$mg_M^{ME} = mg_M^{MI} = 0.724; 0.706; 0.690$$

3.3.6.4.3 Requerimiento especial para vigas exteriores

El desarrollo de las ecuaciones requeridas para obtener los factores de distribución previamente expuestos, se consideraron puentes que únicamente tenían diafragmas a los extremos. Por lo tanto, si se consideran diafragmas interiores, la distribución transversal de la carga mejorará en algún grado. Es por ello que el artículo 4.6.2.2.2d de las especificaciones de la AASHTO propone que, para el caso de puentes con diafragmas intermedios, el factor de distribución para vigas exteriores no debe ser menor que el factor obtenido asumiendo que la sección del puente se deflecta y rota como una sección rígida.

Para hallar el factor de distribución para vigas exteriores, la AASHTO propone la siguiente ecuación, la cual proviene del método de Courbon y cuyo resultado expresa el factor de distribución en términos de carriles de diseño (al igual que los factores previamente hallados)⁸:

$$R = \frac{N_L}{N_B} + \frac{X_{ext} \sum_{i=1}^{NL} e}{\sum_{i=1}^{NB} x^2}$$

Donde:

R = Reacción en la viga exterior, en términos de carriles de diseño

NL = Número de carriles cargados considerados

ei = Excentricidad de un camión de diseño o línea de carga de diseño, medida desde el centro de gravedad de la configuración de vigas propuesta, tal como se muestra en la Figura 45.

xi = Distancia horizontal desde el centro de gravedad de la configuración de vigas hasta cada viga, tal como se muestra en la Figura 45.

Xext = Distancia horizontal desde el centro de gravedad de la configuración de vigas hasta la viga exterior, tal como se muestra en la Figura 45.

Nb = Número de vigas

⁸ AASHTO LRFD, (2010). Especificaciones de diseño para puentes.

Figura 45. Ubicación transversal de los camiones de diseño Fuente: Elaboración Propia

Como se muestra en la Figura 45, para hallar la máxima reacción en la viga exterior, se colocan los camiones lo más cerca posible al borde. El espaciamiento mínimo entre la rueda del camión y la vereda debe ser de 60 cm.

Nb = 7Xext = 7200

$$x_1 = -2400$$
 $x_2 = -4800$
 $x_3 = -7200$ $x_4 = 2400$
 $x_5 = 4800$ $x_6 = 7200$

$$\sum x^2 = 1612.8x10^5$$

Considerando 1 vía cargada: (Factor de presencia múltiple = 1.2) NL = 1 $e1 = 6200 \rightarrow \Sigma e = 6200 \rightarrow 1.2 R = 0.504$ carriles de diseño

Considerando 2 vías cargadas: (Factor de presencia múltiple = 1) NL = 2 e1 = 6200 $\Sigma e = 9400 \rightarrow 1.0 R = 0.705$ carriles de diseño e2 = 3200

Considerando 3 vías cargadas: (Factor de presencia múltiple = 0.85) NL = 3 e1 = 6300 e2 = 3200 $\Sigma e = 7500 \rightarrow 0.85 R = 0.649$ carriles de diseño e3 = -2000

Considerando 4 vías cargadas: (Factor de presencia múltiple = 0.65) NL = 4 e1 = 6300 e2 = 3200 $\Sigma e = 2500 \rightarrow 0.65 R = 0.683$ carriles de diseño e3 = -2000e4 = -5000

Los factores de distribución de las sobrecargas por carril para momento en las vigas serán:

Viga interior: g = 0.724 carriles de diseño Viga exterior: mg = 0.705 carriles de diseño Dado que realizaremos el mismo diseño para vigas interiores y exteriores, tomaremos el factor g = 0.724

Ubicación	M(104)	M(200)	M(205)	V(100)	V(110)	V(200)
100	0.0000	0.0000	0.0000	22.5000	0.0000	0.0000
101	1.1313	-0.5470	-0.1989	19.7030	-2.7970	5.8005
102	2.2757	-1.0607	-0.3857	16.9394	-5.5607	1.1250
103	3.4468	-1.5082	-0.5483	14.2418	-8.2582	1.5995
104	4.6575	-1.8563	-0.6750	11.6438	-10.8563	1.9688
105	3.6713	-2.0718	-0.7533	9.1782	-13.3218	2.1974
106	2.7515	-2.1215	-0.7715	6.8785	-15.6215	2.2500
107	1.9112	-1.9724	-0.7171	4.7777	-17.7224	2.0918
108	1.1635	-1.5910	-0.5785	2.9090	-19.5910	1.6875
109	0.5222	-0.9448	-0.3436	1.3052	-21.1948	1.0019
110 o 200	0.0000	0.0000	0.0000	22.5000	-22.5/0	0/22.5
201	-0.0204	-1.1455	0.5690	-1.1455	-1.1455	20.8575
202	-0.0333	-1.8745	1.3115	-1.8745	-1.8745	18.8100
203	-0.0400	- 2.2478	2.2275	- 2.2478	- 2.2478	16.4588
204	-0.0414	-2.3258	3.3172	-2.3258	- 2.3258	13.9050
205	-0.0386	-2.1697	4.5803	-2.1697	-2.1697	11.2500
206	-0.0327	-1.8398	3.3172	-1.8398	-1.8398	8.5950
207	-0.0248	-1.3973	2.2275	-1.3973	-1.3973	6.0413
208	-0.0161	-0.9025	1.3115	-0.9025	-0.9025	3.6900
209	-0.0074	-0.4165	0.5690	-0.4165	-0.4165	1.6425
210 o 300	0.0000	0.0000	0.0000	22.5000	0.0000	0.0000
301	0.0046	0.2576	-0.3436	0.2576	0.2576	-1.0019
302	0.0077	0.4340	-0.5785	0.4340	0.4340	-1.6875
303	0.0096	0.5380	-0.7173	0.5380	0.5380	-2.0918
304	0.0103	0.5785	-0.7715	0.5785	0.5785	-2.2500
305	0.0100	0.5650	-0.7533	0.5650	0.5650	-2.1974
306	0.0090	0.5063	-0.6750	0.5063	0.5063	-1.9688
307	0.0073	0.4113	-0.5483	0.4113	0.4113	-1.5995
308	0.0051	0.2894	-0.3857	0.2894	0.2894	-1.1250
309	0.0027	0.1492	-0.1989	0.1492	0.1492	-0.5801
310	0.0000	0.0000	0.0000	22.5000	0.0000	0.0000

3.3.6.4.4 Distribución de Momentos por Carga Viva

Tabla 13. Coeficientes de las ordenadas de influencia Fuente: Elaboración Propia

$$M_{LL+IM} = mg[(M_{camion} \circ M_{tan})\left(1 + \frac{IM}{100}\right) + M_{carril}]$$

Ubicación 104:

Para tramos relativamente cortos el tándem de diseño gobierna con momento positivo, pero en este caso gobernara el camión de diseño con un largo de 4.3 entre los ejes de 135 kN ver Figura 46.

Fuente: Elaboración Propia

$$M_{camión} = 35(0.10582)(22.5) + 145(0.207 + 0.12597)(22.50)$$
$$= 1169.65 \, kNm$$

 $M_{tandem} = 110(0.207 + 0.18364)(22.50) = 966.83 \ kNm$

$$M_{carril} = 9.3(0.10214)(22.50)^2 = 480.89 \, kNm$$

Vigas Interiores

$$M_{LL+IM} = 0.724(1169.65x1.33 + 480.89) = 1474.44 \ kNm$$

Vigas Exteriores

$$M_{LL+IM} = 0.724(1169.65x1.33 + 480.89) = 1474.44 \ kNm$$

Ubicación 200: Para momento negativo en los soportes un único camión gobierna con el segundo eje separado a 9000 mm ver Tabla 4.6, los

factores de distribución están basados en la longitud promedio del tramo1 y el tramo 2 ver Figura 47.

$$M_{camión} = 145(-0.07071 - 0.08331)(22.50) + 35(-0.10306)(22.50)$$
$$= -583.65kN$$

 $M_{carril} = 9.3(-0.13853)(22.50)^2 = -652.22 \ kNm$

Vigas Interiores

$$M_{LL+IM} = 0.724(-583.65x1.33 - 652.22) = -1034.22 \ kNm$$

Vigas Exteriores

$$M_{LL+IM} = 0.724(-583.65x1.33 - 652.22) = -1034.22 \ kNm$$

Ubicación 205: El tándem gobierna esta posición, ver Figura 48.

Figura 48. Posición de la carga viva para dar el máximo momento positivo en el tramo interior

Fuente: Elaboración Propia

 $M_{tandem} = 110(0.20357 + 0.17864)(27.00) = 945.97 \ kNm$

 $M_{carril} = 9.3(0.10286)(22.50)^2 = 484.28 \, kNm$

Vigas Interiores

$$M_{LL+IM} = 0.724(945.97x1.33 + 484.28) = 1261.52 \ kNm$$

Vigas Exteriores

$$M_{LL+IM} = 0.724(945.97x1.33 + 484.288) = 1261.52 \ kNm$$

3.3.6.5 Distribución de Factores por Cortante: [A4.6.2.2.3]El tipo de sección transversal es del Tipo (e) de la Tabla [5.6.2.2.1-1] laS=2400 mm, mg es independiente de la longitud del tramo.

3.3.6.5.1 Vigas Interiores Según AASHTO LRFD [A4.6.2.2.3ª y Tabla 4.6.2.2.31-1]

Un carril cargado

$$mg_V^{SI} = 0.36 + \frac{s}{7600} = 0.36 + \frac{2400}{7600} = 0.676$$

Dos o más carriles cargados

$$mg_V^{SI} = 0.2 + \frac{S}{3600} - \left(\frac{S}{10700}\right)^2 = 0.2 + \frac{2400}{3600} - \left(\frac{2400}{10700}\right)^2 = 0.816$$

Para las vigas interiores los factores de distribución están gobernados por los múltiples carriles = 0.816

3.3.6.5.2 Vigas Exteriores Según AASHTO LRFD [A4.6.2.2.3b y Tabla 4.6.2.2.3b-1]

Ley de momentos: $mg_V^{SE} = 0.583$ Gobierna $mg_V^{SE} = emg_V^{MI}$

Donde:

$$e = 0.6 + \frac{d_c}{3000} = 0.6 + \frac{500}{3000} = 0.767$$
$$mg_V^{ME} = 0.767(0.724) = 0.555$$

Los factores de distribución de las sobrecargas por carril para cortante en las vigas serán:

Viga interior: g = 0.816 carriles de diseño Viga exterior: mg = 0.555 carriles de diseño Dado que realizaremos el mismo diseño para vigas interiores y exteriores, tomaremos el factor g = 0.816

3.3.6.5.3 Distribución de Corte por Carga Viva:

$$V_{LL+IM} = mg[(V_{camión} \circ V_{Tan}) 1.33 + V_{carril}]$$

Ubicación 100: El camión de diseño gobierna esta posición con una separación de 4.3m entre los ejes de 135kN.

Figura 49. Posición de la carga viva para dar el máximo cortante en el soporte

Fuente: Elaboración Propia

 $V_{camión} = 145(1 + 0.7638) + 35(0.53803) = 274.58 \, kN$

 $V_{tandem} = 110(1 + 0.9337) = 212.71 \, kN$

 $V_{carril} = 9.3(0.45536)(22.5) = 95.28 \, kN$

Vigas Interiores

$$V_{LL+IM} = 0.816[(274.58)1.33 + 95.28] = 375.74 \, kN$$

Vigas Exteriores

$$V_{LL+IM} = 0.816[(274.58)1.33 + 95.28] = 375.74 \, kN$$

Ubicación 110: El camión gobierna esta posición.

Figura 50. Posición de la carga viva para dar el máximo cortante en el lado izquierdo del soporte interior Fuente: Elaboración Propia

 $V_{camión} = 145(-1 - 0.94715) + 35(-0.7111) = -307.23 \, kN$

 $V_{tandem} = 110(-1 - 0.9691) = -216.601 \, kN$

 $V_{carril} = 9.3(-0.63853)(22.5) = 133.61 \, kN$

Vigas Interiores

$$V_{LL+IM} = 0.816[(-307.23)1.33 + -133.61] = -442.46 \, kN$$

Vigas Exteriores

$$V_{LL+IM} = 0.816[(-307.23)1.33 + -133.61] = -442.46 \, kN$$

Ubicación 200: El camión de diseño gobierna esta posición.

Figura 51. Posición de la carga viva para dar el máximo cortante en el lado derecho del soporte interior Fuente: Elaboración Propia

 $V_{cami \delta n} = 145(1 + 0.96089) + 35(0.7234) = 309.65 \ kN$ $V_{carril} = 9.3(0.66510)(22.5) = 139.17 \ kN$

Vigas Interiores

 $V_{LL+IM} = 0.816[(309.65)1.33 + 139.17] = 449.62 \ kN$

Vigas Exteriores

$$V_{LL+IM} = 0.816[(309.65)1.33 + 139.17] = 449.62 \ kN$$

3.3.7 Calcular las solicitaciones debido a otras cargas

Utilizando los momentos totales de cada tramo obtenidos con las líneas de influencia, calcularemos las solicitaciones por carga muerta.

Momentos

$$M = w(area neta)(L)^{2}$$
$$M_{104} = w(0.07129)(22.5)^{2} = 36.10 \text{w kNm}$$
$$M_{200} = w(-0.12179)(22.5)^{2} = -61.66 \text{w kNm}$$

$$M_{205} = w(0.05821)(22.5)^2 = 29.47w \ kNm$$

Cortantes

$$V = w(area neta)(L)$$
$$V_{100} = w(0.37821)(22.5) = 8.51 \text{w kN}$$
$$V_{110} = w(-0.62179)(22.5) = -14.00 \text{w kN}$$
$$V_{200} = w(0.6000)(22.5) = 13.5 \text{w kN}$$

Vigas Interiores

DC:

Losa:
$$(2400x9.81x10^{-3})(0.20)(2.40) = 11.30 \ kN/m$$

Alma viga T: $(2400x9.81x10^{-3})(0.40)(1.80 - 0.20) = 15.07 \ kN/m$

$$W_{DC} = 26.37 \ kN/m$$

DW

Capa de Rodadura:

$$(2250x9.81x10^{-3})(0.075)(2.400) = 3.97 \ kN/m$$

 $W_{DW} = 3.97 \ kN/m$

Determinados los valores de w reemplazar en las expresiones de momentos y cortantes:

	M	OMENTOS (KNM)			CORTANTE (KN	1)
W	M104	M200	M205	V100	V110	V200
26.370	951.960	-1625.970	777.120	224.410	-369.180	356.000
588.600	2.891	-3.809	1.489	0.419	-0.758	0.589
3.970	143.317	-244.790	117.000	33.780	-55.580	53.600
	1474.44	-1034.22	1261.52	375.74	-442.46	449.62

Tabla 14. Momentos y Cortantes en Vigas Interiores

Fuente: Elaboración Propia

Vigas Exteriores

DC:

Alma viga T:

 $(2400x9.81x10^{-3})(0.2)((1.80 - 0.23) + (1.80 - 0.20)) = 14.93 kN/m$

Tablero: 4.46 kN/m

Voladizo: 7.27 kN/m

Barrera: 10.43 kN/m

$$W_{DC} = 37.09 \ kN/m$$

DW

Capa de Rodadura:

 $(2250x9.81x10^{-3})(0.075)(1.700) = 2.81 \ kN/m$

$$W_{DW} = 2.81 \ kN/m$$

Determinados los valores de w reemplazar en las expresiones de momentos y cortantes:

	MOME	NTOS (KNM)			(KN)	
W	M104	M200	M205	V100	V110	V200
37.090	1338.950	-2286.970	1093.040	315.640	-519.260	500.720
588.600	2.891	-3.809	1.489	0.419	-0.758	0.589
2.810	101.440	-173.260	82.810	23.910	-39.340	37.940
	1474.44	-1034.22	1261.52	375.74	-442.46	449.62

Tabla 15. Momentos y Cortantes en Vigas Exteriores Fuente: Elaboración Propia

3.3.8 Investigar el Estado Limite de Servicio

3.3.8.1 Durabilidad

Según AASHTO LRFD [C5.12.1]

Tiene por objetivo lograr mayor durabilidad incluyen la calidad del hormigón, el adecuado recubrimiento del hormigón sobre las armaduras, el uso de combinaciones cemento agregados no reactivos, buena compactación del hormigón, adecuado contenido agua cemento y un buen curado.

Recubrimiento para las armaduras principales no protegidas

Exposición a sales anticongelantes	60 mm
Otras situaciones exteriores	50 mm
Losas hormigonadas in situ	25 mm

El recubrimiento sobre zunchos y estribos 12mm menos

$$d_{pos} = \left(1800 - \left(50 + \frac{25.4}{2}\right)\right) = 1737.3 \ mm$$
$$d_{neg} = \left(1800 - \left(60 + \frac{25.4}{2}\right)\right) = 1727.3 \ mm$$

3.3.8.2 Control de fisuración

Según AASHTO LRFD [A5.7.3.4]

La fisuración por flexión es controlada por la separación s en la armadura más cercana a la cara de tracción bajo esfuerzos de cargas de servicio.

$$s \le \frac{12300}{\beta_s f_s} \gamma_e - 2d_c$$

$$\beta_s = 1 + \frac{d_c}{0.7(h - d_c)}$$

Figura 52. Longitud entre puntos de inflexión para cargas permanentes Fuente: Elaboración Propia

3.3.8.3 Ancho de ala efectiva

Según AASHTO LRFD [A4.6.2.6.1]

Depende de la longitud efectiva del tramo, lo cual está definido como la distancia entre los puntos de inflexión debidos a las cargas permanentes, para vigas continuas.

Flexión Positiva M_{104} L efec= 17020 mm

$$b_i \leq \begin{cases} \frac{1}{4} L_{efec} = \frac{1}{4} (17020) = 4255 \ mm \\ 12t_s + b_w = 12(200) + 400 = 2800 \ mm \\ S = 2400 \ mm \end{cases}$$

$$b_e - \frac{1}{2}b_i \leq \begin{cases} \frac{1}{8}L_{efec} = \frac{1}{8}(17020) = 2127.5 \ mm \\ 6t_s + \frac{1}{2}b_w = 6(200) + \frac{1}{2}(400) = 1400 \ mm \\ ancho \ del \ voladizo = 900 \end{cases}$$

$$b_e = \frac{1}{2}(2400) + 900 = 2100 mm$$

 $b_e = 2100 mm$ $b_i = 2400 mm$

3.3.8.4 Armadura de Flexión Positiva - Viga exterior

Para el Estado Limite de Servicio [Tabla A3.4.1-1] n=1 y=1, las cargas de momentos son de la tabla.

$$M_{104} = \sum n_i \gamma_i Q_i = M_{DC} + M_{DW} + mg M_{LL+IM}$$
$$M_{104} = 1338.95 + 2.8911 + 101.44 + 1474.44$$
$$M_{104} = 2917.72 \ kNm$$

 $M_{104} = 2917.72 \ kNm$ f'c= 28MPa fy= 420MPa $d_{pos} = 1737.3 \ mm$ Asumir:

$$f_s = 0.6 f_y = 0.6(420) = 252 MPa = N/mm^2$$

Entonces:

$$A_{s} = \frac{M}{f_{s}jd} = \frac{2917.72 \times 10^{6}}{252(0.875)(1737.3)} = 7616.58 \ mm^{2}$$
16 Barras de 1" $A_{s} = 8112 \ mm^{2}$
Radio interno $= 2d_{s} > \frac{1}{2}d_{b}$
 $2(12.7) > \frac{1}{2}(34.925)$
 $25.4 > 17.46$

El centro de la barra 1 " estará colocado perpendicular al estribo a una distancia de $(2d_s = 25.4 mm)$.

$$b_{min} = 2(38 + 3d_s) + 2d_b + 2(1.5d_b)$$

$$b_{min} = 2(38 + 3(12.7)) + 5(25.4)$$

$$b_{min} = 279.2 mm$$

$$b_w = 400 mm$$

Tres barras 1" se ajustara en un $b_w = 400 \ mm$

$$y_s = \frac{2843.2}{16} = 177.7 \ mm$$

$$d_{pos} = 1800 - 177.7 = 1622.3 \ mm$$

Revisar la fisuración mediante la sección transformada [A5.7.3.4]

$$n = \frac{E_s}{E_c} = 8$$
 $b = b_e = 2100 \ mm \ A_s = 8112 \ mm^2$

Asumiendo que el eje neutro se encuentra en el alma

Ubicación del eje neutro (x):

$$\frac{1}{2}bx^2 = nA_s(d-x)$$

$$\frac{1}{2}((2100x200x200) + (400x^2)) = (8x8112)(1622.3 - (x + 200))$$

$$x = 282.66$$

El eje neutro se encuentra en el alma.

La actual separación de las barras debería ser comparada con la máxima separación permitida para el control de la fisuración.

Separación Actual:

$$s = (400 - 2(38 + 12.7))/2 = 149.3$$

Separación máxima:

$$s = \frac{123000}{\beta_S f_S} \gamma_e - 2d_c$$

 $\beta_S = 1 + \frac{d_c}{0.7(h-d_c)}$ $\gamma_e = 0.75$ factor de exposición tipo 2

La relación entre el esfuerzo del acero f_S y el esfuerzo en el concreto f_c es:

$$f_S = nf_c = n\frac{M(d-x)}{I_{cr}}$$

n = 8 M=2917.72 kNm d= 1622.3 mm x=282.66 mm

$$d_c = 38 + 12.7 + \frac{25.4}{2} = 63.4 mm$$
$$\beta_s = 1 + \frac{d_c}{0.7(h - d_c)} = 1 + \frac{63.4}{0.7(1800 - 63.4)} = 1.05 mm$$

Determinar el momento de inercia de la sección fisurada:

$$I_{cr} = \frac{1}{3} (2100)(200)^3 + \frac{1}{3} (400)(282.66)^3 + 8(8112)(1622.3 - 482.66)^2$$
$$I_{cr} = 9.29 \times 10^{10} \ mm^4$$
$$f_S = n \frac{M(d-x)}{I_{cr}} = 8 \frac{2917.72 \times 10^6 (1622.3 - 482.66)}{9.29 \times 10^{10}} = 286.34 \ N/mm^2$$
$$s < \frac{123000}{\beta_S f_S} \gamma_e - 2d_c = \frac{123000}{1.05(286.34)} 0.75 - 2(63.4) = 180.03 > 150 \ mm^2$$

16 barras de 1" están correctos para el control de fisuración

3.3.8.5 Armadura de Flexión Negativa – Viga Exterior

Para el Estado Limite de Servicio [Tabla A3.4.1-1] n=1 y y=1

$$M_{200} = \sum n_i \gamma_i Q_i = M_{DC} + M_{DW} + mg M_{LL+IM}$$

$$M_{200} = (-2286.97 - 3.8085 - 173.26 - 1034.22)$$

$$M_{200} = -3498.26 \ kNm$$

$$A_s = \frac{M}{f_s j d} = \frac{3498.26 \times 10^6}{252(0.875)(1726)} = 9191.85 \ mm^2$$
19 barras de 1" As= 9633 \ mm^2

La armadura de traccion se distribuye sobre el menor de: El ancho de ala efectivo [A4.6.2.6.1] o

Flexión Negativa M₂₀₀

$$L_{efec=}$$
 11300 mm

$$b_i \leq \begin{cases} \frac{1}{4}L_{efec} = \frac{1}{4}(11300) = 2825 \ mm \\ 12t_s + b_w = 12(200) + 400 = 2800 \ mm \\ S = 2400 \ mm \end{cases}$$

$$b_e - \frac{1}{2}b_i \leq \begin{cases} \frac{1}{8}L_{efec} = \frac{1}{8}(11300) = 1412.5 \ mm \\ 6t_s + \frac{1}{2}b_w = 6(200) + \frac{1}{2}(350) = 1400 \ mm \\ ancho \ del \ voladizo = 900 \end{cases}$$

Un ancho igual 1/10 del promedio de los tramos adyacentes entre apoyos [A5.7.3.4-2007]

$$\frac{1}{10}L_{prom} = \frac{1}{10}(24750) = 2475 mm$$
$$b_i = 2400 mm$$
$$b_e = \frac{1}{2}(2400) + 900 = 2100 mm$$

Separación de 19 barras de 1" = (2100-2(38+12.7))/18 = 111.03 mm. El cálculo de la máxima separación permitida entre barras depende del esfuerzo de tracción (fs) debido a las cargas de servicio.

Entonces dneg para barras de 1" es:

$$d_{neg} = \left(1800 - 60 - 12.7 - \frac{25.4}{2}\right) = 1714.6 mm$$
$$n = \frac{E_s}{E_c} = 8 \qquad b_w = 400 mm \qquad A_s = 9633 mm^2$$

Ubicación del eje neutro (x):

$$\frac{1}{2}bx^2 = nA_s(d-x)$$
$$\frac{1}{2}(400)(x^2) = (8x9633)(1714.6-x)$$
$$x = 642.68$$

El eje neutro se encuentra en el alma.

La actual separación de las barras debería ser comparado con la máxima separación permitida para el control de la fisuración.

Separación máxima:

$$s = \frac{123000}{\beta_S f_S} \gamma_e - 2d_c$$

 $\beta_S = 1 + \frac{d_c}{0.7(h-d_c)}$ $\gamma_e = 0.75$ factor de exposición tipo 2

La relación entre el esfuerzo del acero f_S y el esfuerzo en el concreto f_c es:

$$f_S = nf_c = n\frac{M(d-x)}{I_{cr}}$$

M=3498.26 kNm d= 1714.6 mm x=642.68mm

$$d_c = 60 + 12.7 + \frac{25.4}{2} = 85.4 mm$$
$$\beta_s = 1 + \frac{d_c}{0.7(h - d_c)} = 1 + \frac{85.4}{0.7(1800 - 85.4)} = 1.071 mm$$

Determinar el momento de inercia de la sección fisurada:

$$\begin{split} I_{cr} &= \frac{1}{3} (400) (642.68)^3 + 8(9633) (1714.6 - 642.68)^2 = 12.39 \times 10^{10} \ mm^4 \\ f_S &= n \frac{M(d-x)}{I_{cr}} = 8 \frac{3498.26 \times 10^6 (1714.6 - 642.68)}{12.39 \times 10^{10}} = 242.12 \ N/mm^2 \\ s &< \frac{123000}{\beta_S f_S} \gamma_e - 2d_c = \frac{123000}{1.071(242.12)} \ 0.75 - 2(85.4) \\ s &= 111.03 < 184.95 \ mm \end{split}$$

19 barras de 1" están correctas para el control de fisuración

3.3.9 Carga por Fatiga

Un camión de diseño con la separación constante de 9000 mm entre los ejes de 14500 N [A3.6.2.1]

Carga dinámica permitida IM=15% [Tabla A3.6.2.1-1]

Factor de distribución deberá ser quitado. [C3.6.1.1.2]

Debe considerarse la fatiga en las ubicaciones 104 y 200 [A5.5.3.1]

Rango de tensión de fatiga (ff) permitida en las armaduras [A5.5.3.2]

$$f_f \le 145 - 0.33 f_{min} + 55(\frac{r}{h})$$

Donde

 f_{min} = Minima tensión por sobrecarga resultante de la combinación de cargas correspondiente a fatiga la tracción se considera (+), la compresión (-) (Mpa)

Ubicación 104: Vigas exteriores

$$mg_M^{SE} = \frac{0.724}{1.2} = 0.603$$

Momento por carga de fatiga para la máxima tracción en la armadura.

$$\begin{split} M_{LL} &= 22.5[145(0.20700+0)+35(0.1259)] = 774.48 \, kNm \\ M_{LL} &= 22.5[145(0.20700+0.05171)+35(0.1058)] = 927.36 \, kNm \\ M_{104} &= 0.75[(g_M^{SE})(M_{LL})(1+IM)] \\ M_{104} &= 0.75[(0.603)(927.36)(1.15)] = 482.31 \, kNm \end{split}$$

Momento por carga de fatiga para la máxima compresión en la armadura.

 $M_{LL} = 22.5[145(-0.04135 - 0.01605) + 35(-0.03392)] = -213.98 \, kNm$

$$M_{104} = 0.75[(g_M^{SE})(M_{LL})(1+IM)]$$

$$M_{104} = 0.75[(0.603)(-213.98)(1.15)] = -111.29 \, kNm$$

El momento por carga de fatiga varia de -111.29 a 482.31.

El momento por carga muerta para viga exterior es:

$$M_{DL} = M_{DC} + M_{Diaf} + M_{DW} = 1338.95 + 2.8911 + 101.44 = 1443.28 \ kNm$$

El momento combinado en la ubicación 104 debido a la carga permanente más la carga del camión de fatiga es siempre positivo y nunca produce compresión en el acero de flexión inferior. Por tanto el máximo y mínimo esfuerzo por fatiga son calculados usando el momento positivo fisurado.

$$f_{max} = \frac{n(M_{DL} + M_{PF\,max})(d_{pos} - x)}{I_{cr}}$$

$$f_{max} = \frac{8(1443.28 + 482.31)(1622.3 - 482.66)(10^6)}{9.29x10^{10}} = 188.98 N/mm^2$$

Esfuerzo mínimo por fatiga es:

$$f_{min} = \frac{n(M_{DL} + M_{PF\,min})(d_{pos} - x)}{I_{cr}}$$
$$f_{min} = \frac{8(1443.28 - 111.29)(1622.3 - 482.66)(10^6)}{9.29x10^{10}} = 130.72 \, N/mm^2$$

El rango de tensión de fatiga en la ubicación 104 es:

$$f_f = 188.98 - 130.72 = 58.26 \, N/mm^2$$
El límite del rango de tensión es:

$$f_f \le 145 - 0.33 f_{min} + 55(\frac{r}{h})$$

$$58.26 \le 145 - 0.33(111.29) + 55(0.3)$$

$$58.26 \le 124.77 \text{ OK}$$

Ubicación 200

Basados en los previos cálculos los momentos debidos a LL+IM en la ubicación 200 son menos que los determinados en la ubicación 104. Por tanto por simple inspección los esfuerzos de fatiga en esta ubicación no son críticos.

3.3.10 Calculo de Deflexiones y Flechas

Para el estado límite de servicio I, n=1 y=1

$$U = \sum n_i \gamma_i Q_i = DC + DW + (LL + IM)$$

3.3.10.1 Criterios para la Deflexión - Carga Viva

Según AASHTO LRFD [A2.5.2.6.2] Factores de distribución para deflexiones [C2.5.2.6.2]

$$mg = m \frac{N_L}{N_B} = 1.00 \left(\frac{4}{7}\right) = 0.5714$$

Donde:

N_L= Número de carriles

 N_B = Numero de vigas

m= Factor de distribución m para 2 carriles = 1.00 [A.3.6.1.1.2]

Usar un camión de diseño o carril de diseño más el 25% del camión de diseño [A3.6.1.3.2]

Límites de deflexión para sobrecarga viva [A.2.5.2.6.2]

PRIMER TRAMO

$$\Delta_{permitida} = \frac{L}{800} = \frac{22500}{800} = 28.13 \text{ mm}$$

Propiedades de la sección fisurada en la ubicación 104

Área bruta (A_g) de la sección

$$A_g = 400(1600) + 2100(200) = 1060000 \ mm^2$$

Determinación del centro de gravedad:

 $x = \frac{400(1600)(800) + 2100(200)(1700)}{(400)(1600) + 2100(200)} = 1156.60 \, mm$

Determinación de la inercia

$$I_g = \frac{1}{12} (400)(1600)^3 + (400)(1600)(1156.60 - 800)^2 + \frac{1}{12} (2100)(200)^3 + 2100(200)(1700 - 1156.60)^2 = 34.34 \times 10^{10} \ mm^4$$

Deflexión Estimada por sobrecarga viva Asumir deflexión máxima donde está el momento máximo.

Ubicación 104

$$M_{104} = (35(0.10582) + 145(0.207 + 0.12597))(22.50) = 1169.65 \, kNm$$

$$M_{200} = (145(-0.07071 - 0.08331) + 35(-0.10306))(22.50)$$
$$= -583.65kNm$$

Momento Total en 104:

$$M_a = M_{DC} + M_{DW} + mgM_{LL}(1 + IM)$$
$$M_a = 1338.95 + 2.8911 + 101.44 + 0.5714(1169.5)(1.33)$$
$$M_a = 2332.06 \ kNm$$

Momento de Inercia Efectivo I_e [A5.7.3.6.2]

$$f'_{c} = 28MPa \ E_{c} = 4800\sqrt{f'_{c}} = 4800\sqrt{28} = 25399 \ MPa$$

$$f_{r} = 0.63\sqrt{f'_{c}} = 0.63\sqrt{28} = 3.33 \ MPa$$

$$M_{cr} = f_{r} \frac{I_{g}}{x} = (3.33) \frac{34.34x10^{10}}{1156.60} = 988.69x10^{6} \ Nmm$$

$$I_{cr} = 9.29x10^{10}mm^{4}$$

$$I_{e} = \left(\frac{M_{cr}}{M_{a}}\right)^{3} I_{g} + \left[1 - \left(\frac{M_{cr}}{M_{a}}\right)^{3}\right] I_{cr}$$

$$\left(\frac{M_{cr}}{M_{a}}\right)^{3} = \left(\frac{988.69x10^{6}}{2332.06x10^{6}}\right)^{3} = 0.076$$

$$I_{e} = 0.076(34.34x10^{10}) + (1 - 0.076)(9.29x10^{10}) = 111.94x10^{9} \ mm^{4}$$

$$EI = E_c I_e = 25399(111.94x10^9) = 284x10^{13}mm^4$$

Las deflexiones para el camión de diseño son:

$$y_{1} = \frac{L^{2}}{6EI} \begin{bmatrix} M_{ij}(2\xi - 3\xi + \xi^{2}) - M_{ij}(\xi - \xi^{3}) \end{bmatrix} \qquad \xi = \frac{x}{L}$$
$$M_{ij} = 0 \qquad M_{ij} = M_{200} = -583.65 \ kNm$$
$$y_{1} = \frac{22500^{2}}{6(284x10^{13})} \begin{bmatrix} -(-583.65x10^{6})(0.4 - 0.4^{3}) \end{bmatrix} = 5.83 \ mm$$

 $y_1 = 5.83 mm \uparrow hacia arriba$

102.09

$$y_{2} = \Delta_{x} = (x < a) = \frac{Pbx}{6EIL} (L^{2} - b^{2} - x^{2})$$

$$P = 35 \text{ kN} \quad x = 0.4\text{L} = 9000 \text{ mm}$$

$$a_{2} = 0.209L = 0.209(22500) = 4702.5 \text{ mm}$$

$$b_{2} = L - a_{2} = 22500 - 4702.5 = 17797.5 \text{ mm}$$

 $y_2 = \frac{35x10^3(17797.5)(9000)}{6(284x10^{13})(22500)}(22500^2 - 17797.5^2 - 9000^2) = 1.59 mm$

 $y_2 = 1.59 mm \downarrow hacia abajo$

104

$$y_3 = \Delta_x = (x < a) = \frac{Pbx}{6EIL}(L^2 - b^2 - x^2)$$

P = 145 kN x = 0.4 L = 9000 mm $b_3 = L - x = 16000 \text{ mm}$

 $y_3 = \frac{145x10^3(16000)(9000)}{6(284x10^{13})(22500)}(22500^2 - 16000^2 - 9000^2) = 9.21 \, mm$

 $y_3 = 9.21 mm \downarrow hacia abajo$

105.91

$$P = 145 \text{ kN} \quad x = 0.4\text{L} = 9000 \text{ mm}$$
$$a_4 = 0.591L = 0.591(22500) = 13297.5 \text{ mm}$$
$$b_4 = L - a_4 = 22500 - 13297.5 = 9202.5 \text{ mm}$$

 $y_4 = \frac{145x10^3(9202.5)(9000)}{6(284x10^{13})(22500)}(22500^2 - 9202.5^2 - 9000^2) = 10.67 mm$

 $y_4 = 10.67 \ mm \ \downarrow hacia \ abajo$

Deflexión Estimada (LL+IM) en la ubicación 104:

Con cuatro carriles de tráfico cargados por 7 vigas, cada viga carga más de la mitad de carga de carril (0.5714). Incluyendo el impacto y los factores de presencia múltiple, la deflexión estimada por carga viva es:

$$\Delta_{104}^{LL+IM} = mg(-y1 + y2 + y3 + y4)(1 + IM)$$

$$\Delta_{104}^{LL+IM} = 1(0.5714)(-5.83 + 1.59 + 9.21 + 10.67)(1.33)$$

$$\Delta_{104}^{LL+IM} = 11.89 \ mm < \Delta_{permitida} = 28.13 \ mm$$

3.3.10.2 Flecha por Carga Muerta Según AASHTO LRFD [A5.7.3.6.2]

	Vigas Interiores	Vigas Exteriores		
СМ	(kN/m)	(kN/m)		
W _{DC}	26.37	37.09		
W _{DW}	3.97 2.81			
W _{DL}	30.34	39.9		

Análisis de Carga Unitaria

Ecuaciones de deflexión: Para una viga simple a una distancia x del apoyo izquierdo:

$$\Delta_{x} = \frac{wx}{24EI} (L^{3} - 2Lx^{2} + x^{3}) \qquad \Delta_{CL} = \frac{5wL^{4}}{384EI}$$

Para una viga simple desde i final, debido a los momentos extremos

$$y = \frac{L^2}{6EI} \left[M_{ij} (2\xi - 3\xi + \xi^2) - M_{ij} (\xi - \xi^3) \right]$$

Figura 53. Análisis de la carga uniformemente distribuida.

Fuente: Elaboración Propia

Flexión a la Rigidez para deflexiones a largo plazo: La deflexión a largo plazo es la deflexión instantánea multiplicada por el factor de fluencia lenta λ .

$$\Delta_{LT} = \lambda \Delta i$$

Entonces:

$$\Delta_{flecha} = \Delta_i + \Delta_{LT} = (1 + \lambda)\Delta i$$

- Si la deflexión instantánea está basada sobre I_g entonces $\lambda = 4$ [A5.7.3.6.2]
- Si la deflexión instantánea está basada sobre I_e entonces $\lambda = 3 1.2 \left(\frac{A'_s}{A_s}\right) \ge 1.6$ [A5.7.3.6.2]

Ubicación 104:

$$x = 0.4L = 9000 \ mm \qquad \text{w=1 N/mm} \qquad M_{ij} = 0 \qquad M_{ji} = 61.65 \times 10^6 \ Nmm \\ \Delta_i = \Delta_x + y \\ \Delta_i = \frac{wx}{24EI} (L^3 - 2Lx^2 + x^3) + \frac{L^2}{6EI} \left[M_{ij} (2\xi - 3\xi^2 + \xi^3) - M_{ij} (\xi - \xi^3) \right] \\ \Delta_x = \frac{1(9000)}{24(284x10^{13})} (22500^3 - 2(22500)(9000)^2 + (9000)^3) = 1.12 \ mm \\ y = \frac{22500^2}{6(284x10^{13})} \left[-(61.65x10^6)(0.4 - 0.4^3) \right] = -0.62 \ mm \\ \Delta_i = 1.12 - 0.62 \ = \ 0.50 \ mm \ \downarrow \ hacia \ abajo$$

- Viga Interior

$$W_{DL} = 30.34 N/mm$$

 $\Delta_i = 0.50 * 30.34 = 15.17 mm$

Deflexión Instantánea Promedio $\Delta_i = 15 mm$

Usando:

$$\lambda = 3 - 1.2 \frac{9633}{8112} = 1.6 \ mm \ge 1.6$$

- Viga Exterior

$$W_{DL} = N/mm$$

 $\Delta_{flecha} = W_{DL}(1+\lambda)\Delta i = 39.9(1+1.6)(0.50) = 51.78 \ mm$

- Viga Interior

$$W_{DL} = N/mm$$

 $\Delta_{flecha} = W_{DL}(1+\lambda)\Delta i = 30.34(1+1.6)(0.50) = 39.44 \ mm$

Deflexión a largo plazo Promedio $\Delta_{flecha}{=}~45.61~mm$

Ubicación 205:

L=27000
$$x = 0.5L = 13500 mm$$
 w=1 N/mm
 $M_{ij} = -M_{ji} = 61.65x10^6 Nmm$
 $EI = 284x10^{13} Nmm^2$ $\xi = 0.5$
 $\Delta_i = \Delta_{CL} - y$
 $\Delta_i = \frac{5wL^4}{20017K} - \frac{L^2}{27K} [M_{ij}(2\xi - 3\xi^2 + \xi^3) - M_{ij}(\xi - \xi^3)]$

$$\Delta_{i} = \frac{5WL^{2}}{384EI} - \frac{L^{2}}{6EI} \left[M_{ij} (2\xi - 3\xi^{2} + \xi^{3}) - M_{ij} (\xi - \xi^{3}) \right]$$
$$\Delta_{CL} = \frac{5(1)(27000)^{4}}{384(284x10^{13})} = 2.44 \ mm$$

$$y = \frac{27000^2}{6(284x10^{13})} [61.65x10^6(2(0.5) - 3(0.5^2) + (0.5^3) + 0.5 - 0.5^3)]$$

 $y = 1.98 \, mm$

$$\Delta_i = 2.44 - 1.98 = 0.46 \ mm \downarrow hacia abajo$$

- Viga Exterior

$W_{DL} = 39.9 \, N/mm$

$$\Delta_i = (0.46)39.9 = 18.35 \, mm$$

- Viga Interior

$$W_{DL} = 30.34 N/mm$$

 $\Delta_i = (0.46)30.34 = 13.96 mm$

Deflexión instantánea Promedio $\Delta_i = 16.16 \ mm$

- Viga Exterior

$$W_{DL} = N/mm$$

 $\Delta_{flecha} = W_{DL}(1+\lambda)\Delta i = 39.9(1+1.6)(0.46) = 47.72 \ mm$

- Viga Interior

$$W_{DL} = N/mm$$

$$\Delta_{flecha} = W_{DL}(1+\lambda)\Delta i = 30.34(1+1.6)(0.46) = 36.29 mm$$

Deflexión a largo plazo Promedio $\Delta f_{flecha} = 42.01 \, mm$ Las flechas deberán ser ubicadas en los encofrados para compensar las deflexiones.

3.3.11 Investigar Estado Limite de Resistencia

3.3.11.1 Flexión

a) Resistencia a la Flexión: [A5.7.3.2, Tabla A3.4.1-1]. Se usaran los momentos de vigas exteriores por ser estos mayores.

$$M_u = \sum n_i \gamma_i M_i = 1.0(1.25M_{DC} + 1.5M_{DW} + 1.75M_{LL+IM})$$

Ubicación 104

Calculo de los momentos factorados

$$M_{104} = 1[1.25(1338.95 + 2.8911) + 1.5(101.44) + 1.75(1474.44)]$$
$$M_{104} = 4409.73 \ kNm$$

$$A_s = 16 \ \emptyset 1'' = 8112 \ mm^2$$
 $b_e = 2100 \ mm$ $f_y = 420 \ MPa$
 $f'_c = 28 \ MPa$

 $a < t_s = 200 mm$

$$a = \frac{A_s f_y}{0.85 f'_c b_e} = \frac{8112(420)}{0.85(28)(2100)} = 68.17 \ mm$$

Ubicación 200

Calculo de los momentos factorados

$$\begin{split} M_{200} &= 1 [1.25(-2286.97 - 3.8085) + 1.5(-173.26) + 1.75(-1034.22)] \\ M_{200} &= 4933.25 \ kNm \end{split}$$

 $A_s = 19 \ \emptyset 1'' = 9633 \ mm^2$ $b_w = 400 \ mm$ $f_y = 420 \ MPa$ $f'_c = 28 \ MPa$

$$a = \frac{A_s f_y}{0.85 f'_c b_e} = \frac{9633(420)}{0.85(28)(400)} = 424.99 \, mm$$

Límites para la armadura [A5.7.2.2]

$$\beta = 0.85 - 0.05 \frac{(f'_c - 28)}{7}$$
$$\beta = 0.85 - 0.05 \frac{(28 - 28)}{7} = 0.85 mm$$

Armadura máxima es: $\frac{c}{d_e} \le 0.42$ [A5.7.3.3.1] Armadura mínima es: $\emptyset M_n \ge 1.2M_{cr}$ [A5.7.3.3.2]

Propiedades de la sección bruta:

Determinación del centro de gravedad:

$$x = \frac{400(1600)(800) + 2100(200)(1700)}{(400)(1600) + 2100(200)} = 1156.60 \, mm$$

Determinación de la inercia

$$I_g = \frac{1}{12} (400)(1600)^3 + (400)(1600)(1156.60 - 800)^2 + \frac{1}{12} (2100)(200)^3 + 2100(200)(1700 - 1156.60)^2 = 34.34x 10^{10} mm^4$$

$$h - x = 1800 - 1156.60 = 643.40 mm$$

 $f_r = 0.97\sqrt{f'_c} = 0.97\sqrt{28} = 5.13 MPa$

Ubicación 104:

Debido a que no se usa acero de pretensado la ecuación quedaría como:

$$d_{e} = \frac{Asfyds}{Asfy}$$
$$d_{e} = ds$$
$$d_{e} = 1622.3 mm$$

$$\frac{c}{d_e} = \frac{a/\beta}{d_e} = \frac{68.17/0.85}{1622.3} = 0.049 \le 0.42$$
$$M_{cr} = \frac{f_r I_g}{x} = \frac{5.13(34.34x10^{10})}{1156.60} = 1523.12 \text{ kNm}$$
$$\emptyset M_n = 4870 \text{ kNm} > 1.2(1523.12) = 1827.74 \text{ KnM}$$

Ubicación 200:

De la misma manera:

$$\begin{aligned} d_e &= \frac{Asfyds}{Asfy} \\ d_e &= ds \qquad d_e = 1714.6 \ mm \\ \frac{c}{d_e} &= \frac{a/\beta}{d_e} = \frac{424.99/0.850}{1714.6} = 0.29 \le 0.42 \\ M_{cr} &= \frac{f_r I_g}{x} = \frac{5.13(34.34x10^{10})}{643.40} = 2738.02 \ kNm \\ \emptyset M_n &= 5396.90 \ kNm \ > 1.2(1523.12) = 3285.62 \ kNm \end{aligned}$$

3.3.12 Cortante

3.3.12.1 Requisitos Generales

La armadura transversal deberá estar proporcionada donde: [A5.8.2.4]

$$V_u > 0.5 \emptyset (V_c + V_p) \qquad \qquad \emptyset = \emptyset_u = 0.9$$

Donde:

 V_u =Fuerza de corte mayorada

Vc = Resistencia nominal al del hormigón

 V_p = Componente de la fuerza de pretensado en la dirección de la fuerza de corte

Mínima armadura transversal

$$A_v = 0.083 \sqrt{f'_c} \frac{b_v S}{f_y}$$

Donde:

 A_v = Área de la armadura transversal en una distancia s. f_y = Tensión de fluencia de la armadura transversal S = Separación de la armadura transversal b_v = Ancho de alma ajustado para considerar la presencia de vainas como se especifica en el Articulo 5.8.2.9 Máxima separación de la armadura transversal [A5.8.2.7]

Si $V_u < 0.125 f'_c$ entonces $S_{max} = 0.8 d_v \le 600 mm$ Si $V_u \ge 0.125 f'_c$ entonces $S_{max} = 0.4 d_v \le 300 mm$

Donde:

 V_u =Tensión de corte calculada de acuerdo con el artículo 5.8.2.9 d_v =Altura de corte efectiva de acuerdo con lo definido en el artículo 5.8.2.9

$$\frac{V_u - \emptyset V_p}{\emptyset b_v d_v}$$

 V_u = Ancho de alma efectivo tomado como el mínimo ancho del alma, medido en forma paralela al eje neutro, entre las resultantes de las fuerzas de tracción y compresión debidas a flexión, o, en el caso de secciones circulares, diámetro de la sección modificado para considerar la presencia de vainas si corresponde (mm)

 d_v = Altura de corte efectiva tomada como la distancia, medida de forma perpendicular al eje neutro, entre las resultantes de las fuerzas de

tracción y compresión debidas a flexión; no es necesario tomarla menor que el mayor valor entre $0.9d_e$ o 0.72h (mm)

Ø =Factor de resistencia para corte especificado en el Artículo 5.5.4.2

3.3.12.2 Modelo de diseño por secciones

Según AASHTO LRFD [A5.8.3]

Basado en el equilibrio y compatibilidad de las deformaciones, donde la reacción de la fuerza produce compresión en el apoyo, la sección crítica para corte deberá ser tomada como el mayor de $0.5d_v \cot \theta$ o d_v desde la cara interna del apoyo.

Resistencia nominal al corte V_n [A5.8.3]

La resistencia nominal al corte, V_n , se deberá determinar como el menor valor entre:

$$V_n = V_c + V_s + V_p$$
$$V_n = 0.25f'_c b_v d_v + V_p$$

Resistencia nominal al corte concreto:

$$V_c = 0.083\beta \sqrt{f'_c} b_v d_v$$

Donde:

 β = factor que indica la capacidad del hormigón fisurado diagonalmente de transmitir tracción según se especifica en el Artículo 5.8.3.4, normalmente β =2 [A5.8.3.4.1]

Resistencia al corte proporcionado por la armadura de corte

$$V_{s} = A_{v} f_{y} d_{v} \frac{(\cot\theta + \cot\alpha)sin\alpha}{s}$$

 θ = Ángulo de inclinación de las tensiones de compresión diagonal como se determina en el Artículo 5.8.3.4.

 α = Ángulo de inclinación de la armadura transversal respecto del eje longitudinal.

Para estribos verticales $\alpha = 90^{\circ}$ [A5.8.3.3]

$$V_s = \frac{A_v f_y d_v \cot\theta}{s}$$

Determinación de α y β :

Para determinar estos factores usar las tablas de AASHTO [A5.8.3.4.2] las cuales dependen de los siguientes parámetros para vigas no pretensadas sin carga axial.

Esfuerzo nominal de corte en el concreto:

$$V_u = \frac{V_u}{\emptyset b_v d_v}$$

Esfuerzo de tracción en la armadura longitudinal para las secciones con armadura transversal

$$\varepsilon_s = \frac{\frac{M_u}{d_v} + 0.5V_u \cot\theta}{2E_s A_s} \le 0.001$$
 [A5.8.3.4.2]

Armadura longitudinal: [A5.8.3.5] El corte provoca tracción en la armadura longitudinal. En todas las secciones la capacidad de tracción de la armadura longitudinal del lado del elemento traccionado por flexión se deberá dimensionar de manera que satisfaga la siguiente condición:

$$A_{s}f_{y} = \frac{M_{u}}{\phi_{f}d_{v}} + \left(\frac{V_{u}}{\phi_{v}} - 0.5V_{s}\right)\cot\theta$$

Si la ecuación no se satisface entonces aumentar el acero de tracción o reducir la separación de los estribos para incrementar V_s . El procedimiento para desarrollar el diseño por corte está descrito en la sección 6.6

3.3.12.3 Cálculo del diseño por cortante

3.3.12.3.1 Cálculo del V_u y M_u

Se determina a una distancia d_v desde el soporte interior en la posición 200+ d_v

$$A_s = 1900^{\circ}1'' = 9633 \ mm^2$$
 $b_v = 400 \ mm$ $b_w = 400 \ mm$

$$V_s = \frac{V_u}{\phi_u} - 0.083\beta$$

$$a = \frac{A_s f_y}{0.85 f'_c b_w} = \frac{9633(420)}{0.85(28)(400)} = 424.99 \ mm$$

$$d = d_e = d_s = (1800 - 12.7) - \left(60 + \frac{25.4}{2}\right) = 1714.6 \, mm$$

$$d_{v} = max \begin{cases} d - \frac{a}{2} = 1714.6 - \frac{424.99}{2} = 1502.11 \ mm \\ 0.9d_{e} = 0.9(1714.6) = 1543.14 \ mm \\ 0.72h = 0.72(1800) = 1296 \ mm \\ d_{v} = 1543.14 \ mm \end{cases}$$

Distancia desde el soporte como un porcentaje del tramo

$\frac{d_v}{}$	1543.14	- 0.057
$\overline{L_2}^-$	27000	- 0.037

	Carga	W	M ₂₀₀	V ₂₀₀		
	DC	37.09	-2286.97	500.72		
	Diafragma	588.6 N	-3.8085	0.5886		
	DW 2.81 LL+IM		-173.26	37.94		
			-1034.22	449.62		

$$M_{200} = 1[1.25(-2286.97 - 3.8085) + 1.5(-173.26) + 1.75(-1034.22)]$$
$$M_{200} = -4933.25 \ kNm$$

$$V_{200} = 1[1.25(500.72 + 0.588624) + 1.5(37.94) + 1.75(449.62)]$$
$$M_{200} = 1470.38 \, kNm$$

Cálculos de M201 y V201

$$\begin{split} M_{camión} &= 145(-1.85143 - 1.6367) + 35(-1.4182) = -555.42kN \\ M_{carril} &= 9.3(-37.19) = -345.87 \, kNm \\ M_{LL+IM} &= 0.724(-555.42x1.33 - 345.87) = -785.23 \, kNm \\ V_{camión} &= 145(0.927 + 0.0317) + 35(0.7774) = 166.10 \, kN \\ V_{carril} &= 9.3(12.349) = 114.85 \, kN \\ V_{LL+IM} &= 0.816[(166.10)1.33 + 114.85] = 273.98 \, kN \end{split}$$

Carga	W	M_{201}	V_{201}
DC	37.09	-1047.12	400.57
Diafragma	588.6 N	-2.2193	0.588624
DW	2.81	-79.33	30.35
LL+IM		-785.23	273.98

$$M_{201} = 1[1.25(-1047.12 - 2.2193) + 1.5(-79.33) + 1.75(-785.23)]$$
$$M_{201} = -2804.82 \ kNm$$

$$V_{201} = 1[1.25(400.57 + 0.588624) + 1.5(30.35) + 1.75(273.98)]$$
$$V_{201} = 1026.44 \ kNm$$

Hacemos una interpolación de puntos

$$M_{200} = -4933.25$$
 $V_{200} = 1470.38$ $M_{200,57} = -3720.04$ $V_{200,57} = 1217.33$ $M_{201} = -2804.82$ $V_{201} = 1026.44$

3.3.12.3.2 Cálculo de la relación de tensión corte

$$\frac{v}{f'_c}$$

$$V_u = \frac{V_u}{\phi_v b_v d_v} = \frac{1217330}{0.9(400)(1543.14)} = 2.19 \, N/mm^2$$

$$\frac{v}{f'_c} = \frac{2.19}{28} = 0.078$$

3.3.12.3.3 Cálculo de la deformación específica longitudinal.

Asumir el Angulo de inclinación de las tensiones de compresión diagonal y calcular la deformación especifica longitudinal.

$$\varepsilon_{s} = \frac{\frac{M_{u}}{d_{v}} + 0.5V_{u}\cot\theta}{2E_{s}A_{s}} = \frac{\frac{3720.04x10^{6}}{1543.14} + 0.5(1217.33x10^{3})1.43}{2(200x10^{3})(9633)} = 0.852x10^{-3}$$
$$\varepsilon_{s} = 0.852x10^{-3} < 1.00x10^{-3}$$

3.3.12.3.4 Determinar los valores de θ y β

De la tabla 16.

<u>v</u>	<i>s</i> x×1000								
f'_{e}	≤-0.20	≤-0.10	≤-0.05	≤0	≤ 0.125	≤ 0.25	≤ 0.50	≤ 0.75	≤1.00
< 0.075	22,3	20,4	21	21,8	24,5	26,6	30,5	33,7	36,4
20.075	6,32	4,75	4,10	3,75	3,24	2,94	2,59	2,38	2,23
< 0.100	18,1	20,4	21,40	22,5	24,9	27,1	30,8	34,0	36,7
10.100	3,79	3,38	3,24	3,14	2,91	2,75	2,50	2,32	2,18
< 0.125	19,9	21,9	22,80	23,7	25,9	27,9	31,4	34,4	37,0
50.125	3,18	2,99	2,94	2,87	2,74	2,62	2,42	2,26	2,13
≤ 0.150	21,6	23,3	24,20	25,0	26,9	28,8	32,1	34,9	37,3
	2,88	2,79	2,78	2,72	2,60	2,52	2,36	2,21	2,08
< 0.175	23,2	24,7	25,50	26,2	28,0	29,7	32,7	35,2	36,8
30.175	2,73	2,66	2,65	2,60	2,52	2,44	2,28	2,14	1,96
60.000	24,7	26,1	26,70	27,4	29,0	30,6	32,8	34,5	36,1
S 0.200	2,63	2,59	2,52	2,51	2,43	2,37	2,14	1,94	1,79
< 0.225	26,1	27,3	27,90	28,5	30,0	30,8	32,3	34,0	35,7
30.225	2,53	2,45	2,42	2,40	2,34	2,14	1,86	1,73	1,64
≤ 0.250	27,5	28,6	29,10	29,7	30,6	31,3	32,8	34,3	35,8
	2,39	2,36	2,33	2,33	2,12	1,93	1,70	1,58	1,50

Tabla 16. Coeficientes θ y β .

Fuente: Tabla 5.8.3.4.2-1 AASHTO LRFD

 $\beta = 2.31$

3.3.12.3.5 Determinar la armadura requerida en el alma

$$V_s = \frac{V_u}{\phi_u} - 0.083\beta \sqrt{f'_c} b_v d_v$$

$$V_s = \frac{1217330}{0.9} - 0.083(2.31)\sqrt{28}(400)(1543.14) = 726.36 \, kN$$

3.3.12.3.6 Cálculo de la separación de la armadura

Determinar la separación de la armadura transversal utilizando estribos en $\emptyset 1/2" = 127 \ mm^2 \ 2(127)=254 \ mm^2$

$$s \le \frac{A_v f_y d_v \cot\theta}{V_s} = \frac{254(420)(1543.14)(1.43)}{726.36x10^3} = 324.10 \text{ mm}$$

Usar: s= 300

3.3.12.3.7 Revisar el esfuerzo longitudinal:

$$A_{s}f_{y} \ge \frac{M_{u}}{d_{v}\phi_{f}} + \left(\frac{V_{u}}{\phi_{u}} - 0.5V_{s}\right)cot\theta$$
$$V_{s} = \frac{A_{v}f_{y}d_{v}\cot\theta}{s} = \frac{254(420)(1543.14)(1.43)}{300} = 784.70$$
$$(9633)(420) \ge \frac{3720.04x10^{3}}{1543.14(0.9)} + \left(\frac{1217.33}{0.9} - 0.5(784.70)\right)1.43$$
$$4054.86 \ge 4051.69$$

La separación a utilizar será 300 mm

3.4. Diseño de Apoyos Elastoméricos

Se utilizarán apoyos elastoméricos con acero de refuerzo, los cuales consisten en láminas alternadas de acero de refuerzo y elastómeros unidos. Todas las capas internas de elastómero deberán tener el mismo espesor, mientras que las capas externas deberán tener por lo menos el 70 por ciento del espesor de las capas internas.

Se diseñarán los apoyos de un extremo del puente como fijos (sólo permitirán giros) y los apoyos del otro extremo como deslizantes (permitirán giros y el desplazamiento en la dirección longitudinal del puente). La guía para diseño de apoyos "Steel Bridge Bearing Design and Detailing Guidelines", elaborado por la AASHTO en colaboración con la NSBA, especifica distintos arreglos que pueden utilizarse para restringir los desplazamientos de los apoyos elastoméricos.

Para el apoyo fijo se utilizará el arreglo que se muestra en la Figura 34. Al ala inferior de la viga se le soldará una placa de base, por debajo de la cual se colocará el apoyo elastomérico. Se colocarán pernos de anclaje en la placa de base que se anclarán al estribo, para que restrinjan el movimiento horizontal en ambas direcciones.

Fuente: Steel Bridge Bearing Design and Detailing Guidelines

Para el apoyo deslizante se utilizará un arreglo similar, pero se considerarán agujeros para pernos alargados, para que permitan el movimiento en el sentido paralelo al eje del puente.

Se diseñarán los apoyos elastoméricos con el Método B descrito en el artículo 14.7.5. de las especificaciones de la AASHTO.

3.4.1 Geometría del apoyo

El factor de forma de una capa de elastómero, *Si*, debe tomarse como el área del plano de la capa, dividido entre el área del perímetro susceptible a pandearse:

Si =
$$\frac{LW}{2h_{ri}(L+W)}$$

Donde:

L= Dimensión del apoyo perpendicular al eje de rotación considerado (paralelo al eje longitudinal del puente), como se muestra en la Figura.

W= Dimensión del apoyo paralela al eje de rotación considerado.

h_{ri}= Espesor de la i-esima capa de elastómero.

Figura 55. Notaciones de las dimensiones del apoyo Fuente: Diseño de un Puente con estructura de acero. Acevedo, M.

Se elegirá un apoyo constituido por 7 capas de elastómero de 1 cm cada una:

$$h_{ri}$$
= 15 mm
 h_{rt} = 105 mm
 $Si = \frac{350x400}{2x15(350 + 400)} = 6.22$
W= 400 mm
L= 350 mm

3.4.2 Propiedades de los materiales

La AASHTO establece que se debe usar el módulo de corte del elastómero a 73º F (23º C) como base para el diseño. Debe usarse un módulo de corte entre 0.080 y 0.175 ksi (5.62 y 12.3 kg/cm2), debiéndose tomar el que produzca los resultados más desfavorables. [A.14.7.5.2]

3.4.3 Cargas de diseño

Se tomarán como fuerzas verticales sobre el apoyo, a las fuerzas cortantes de los extremos de las vigas en condiciones de servicio. Fuerza vertical debido a cargas estáticas:

$$P_{st} = 559.36 \, kN$$

Fuerza vertical debido a cargas cíclicas:

$$P_{cv} = V_{LL} = 449.62kN$$

3.4.4. Requerimientos de diseño

3.4.4.1. Deformaciones de corte

El espesor total del apoyo elastomérico debe ser por lo menos 2 veces el desplazamiento horizontal máximo, para prevenir la delaminación de las capas.

Deberá cumplirse:

$$h_{rt} \geq 2\Delta_S$$

Donde:

 h_{rt} = Espesor total del elastómero (cm)

 Δ_s = Máxima deformación de corte (cm)

La temperatura de la ciudad de Lima varía de 12°C a 30°C. El gradiente de temperatura será entonces:

$$\Delta_{\rm S} = 18^{\rm o} C$$

Consideramos los siguientes coeficientes térmicos:

Coeficiente térmico del concreto: $\alpha_c = 1.0 \ x \ 10^{-5} \ 1/^{\circ}C$

Coeficiente térmico del acero: $\alpha_a = 1.1x \ 10^{-5} \ 1/^{\circ}C$

Podemos considerar que ambos coeficientes son aproximadamente iguales, por lo cual ante el gradiente de temperatura calculado ambos materiales tendrán la misma deformación:

$$\Delta_{s} = 27000x1.1x10^{-5}x18 = 5.35 mm$$

$$\Delta_{s} = 72000x1.1x10^{-5}x18 = 14.26 mm$$

$$2\Delta_{s} = 28.52 < h_{rt} = 105 mm \rightarrow OK$$

3.4.4.2. Compresión, rotación y corte combinados

La AASHTO menciona que el parámetro crítico en el diseño de apoyos elastoméricos con refuerzo de acero son las deformaciones unitarias de corte en la interface entre el elastómero y el acero, causadas por la carga axial, la rotación y las deformaciones de corte. La combinación de carga axial, rotación y corte en el estado límite de servicio deberá cumplir:

$$\left(\gamma_{a,st} + \gamma_{r,st} + \gamma_{s,st}\right) + 1.75\left(\gamma_{a,st} + \gamma_{r,st} + \gamma_{s,st}\right) \le 5.0$$

(Ec. 14.7.5.3.3-1 de las especificaciones de la AASHTO)

También:

$$\gamma_{a,st} \leq 3$$

(Ec. 14.7.5.3.3-1 de las especificaciones de la AASHTO)

Donde:

 γ_a = Deformación unitaria de corte causada por la carga axial

 γ_r = Deformación unitaria de corte causada por la rotación

 γ_s = Deformación unitaria de corte causada por el desplazamiento de corte

Los términos "st" y "cy" indican que se trata de cargas estáticas y cíclicas, respectivamente.

 La deformación unitaria de corte causada por la carga axial debe tomarse como:

$$\gamma_a = D_a \frac{\sigma_s}{GS_i}$$

(Ec. 14.7.5.3.3-3 de las especificaciones de la AASHTO)

Donde:

 D_a = Coeficiente adimensional. Deberá tomarse como 1.4 para apoyos rectangulares.

G = Módulo de corte del elastómero (kg/cm²)

Si = Factor de forma de una capa de elastómero

 σ_s = Esfuerzo de compresión promedio debido a las cargas estáticas o cíclicas para el estado límite de servicio.

Para las cargas y dimensiones mostradas previamente:

$$D_a = 1.4$$
, G=0.5513 N/mm2, Si=5.38.077

Para el caso de cargas estáticas:

$$\sigma_{s,st} = \frac{P_{st}}{WL} = \frac{559360}{350x400} = 4 N/mm2 \qquad \gamma_{a,st} = 1.4x \frac{4.00}{0.5513x6.22} = 1.63 < 3$$

Para el caso de cargas cíclicas:

$$\sigma_{s,cy} = \frac{P_{cy}}{WL} = \frac{449620}{350x400} = 3.21 N/mm2 \qquad \gamma_{a,cy} = 1.4x \frac{3.21}{0.5513x6.22} = 1.31$$

 La deformación unitaria de corte causada por la rotación para un apoyo rectangular deberá tomarse como:

$$\gamma_r = D_r (\frac{L}{h_{ri}})^2 \frac{\theta_s}{n}$$

Donde:

 D_r = Factor adimensional para apoyos rectangulares deberá tomarse como 0.5

 h_{ri} = Espesor de la i-esima capa de elastómero. (cm)

L= Dimensión del apoyo perpendicular al eje de rotación considerado (paralelo al eje del puente). (cm)

n= Número de capas interiores de elastómero

 θ_s = Maximo angúlo de rotación debido a cargas estáticas o cíclicas. (rad) Para las cargas y dimensiones mostradas previamente:

$$D_r = 0.5, \ L = 350mm, \ h_{ri} = 15mm, \ n = 5$$

Dado que la viga tendrá una comba hacia arriba para contrarrestar las deflexiones verticales debido a la carga muerta, la AASHTO especifica que no será necesario considerar las rotaciones debido a carga muerta en el diseño de los apoyos, ya que cuando la viga sea colocada sobre el apoyo, tendrá una rotación en sus extremos opuesta a la rotación por carga muerta, que llegará a cero conforme se le vayan aplicando las cargas de gravedad. Por ello en el diseño se considerarán únicamente los giros debido a carga viva, más un giro adicional debido a incertidumbres.

Para el cálculo del giro debido a cargas vivas, la AASHTO especifica que se deben considerar que todas las vías están cargadas y que todas las vigas se deforman por igual, con lo cual se tendrá un factor de distribución de carga vehicular g = 0.57, al igual que para el cálculo de deflexiones. A partir de un modelo en SAP2000 hallamos el máximo giro debido a la carga vehicular:

$$\theta_{s,cy} = 0.0094 \, rad$$

La AASHTO establece que se debe agregar un giro debido a las incertidumbres y tolerancias en la construcción:

$$\theta_{s,st} = 0.005 \, rad$$

Con lo cual:

$$\gamma_{r,st} = 0.50(\frac{350}{15})^2 \frac{0.005}{5} = 0.27 \qquad \qquad \gamma_{r,cy} = 0.50(\frac{350}{15})^2 \frac{0.0094}{5} = 0.51$$

La deformación unitaria de corte causada por la deformación de corte deberá tomarse como:

$$\gamma_s = \frac{\Delta_s}{h_{rt}}$$

(Ec. 14.7.5.3.3-10 de las especificaciones de la AASHTO)

Donde:

 h_{rt} = Espesor total del elastómero (cm)

 Δ_S = Maxima deformación de corte (cm)

En nuestro caso:

$$\Delta_{s,st} = 0.40 \ cm$$
$$h_{rt} = 10.5 \ cm$$
$$\gamma_{s,st} = 0.08$$

Finalmente, verificamos la ecuación de interacción para comprensión, rotación y corte combinados:

$$(\gamma_{a,st} + \gamma_{r,st} + \gamma_{s,st}) + 1.75(\gamma_{a,st} + \gamma_{r,st} + \gamma_{s,st}) \le 10.5$$
$$(1.63 + 0.27 + 0.08) + 1.75(1.31 + 0.51) \le 10.5$$
$$5.165 \le 10.5 \to OK$$

3.4.4.3. Estabilidad del apoyo elastomérico

Se considerará que un apoyo es estable si se cumple la ecuación:

 $2A \leq B$

(Ec. 14.7.5.3.4-1 de las especificaciones de la AASHTO)

En la cual:

$$A = \frac{1.92\frac{h_{rt}}{L}}{\sqrt{1+\frac{2L}{W}}} \qquad \qquad B = \frac{2.67}{(S_i+2)(1+\frac{L}{4W})}$$

(Ec. 14.7.5.3.4-2 y 14.7.5.3.4-3 de las especificaciones de la AASHTO) Donde:

 h_{rt} =Espesor total del elastómero (cm)

L= Dimensión del apoyo perpendicular al eje de rotación (paralela al eje longitudinal del puente, cm)

 S_i = Factor de forma de la i-esima capa de elastómero.

W= Dimensión del apoyo paralela al eje de rotación (cm)

Si no se satisface la ecuación 14.7.5.3.4-1, el esfuerzo promedio debido a la carga total deberá satisfacer:

$$\sigma_s \le \frac{GS_i}{2A - B}$$

(Ec. 14.7.5.3.4-4 de las especificaciones de la AASHTO)

Tenemos:

 $h_{rt} = 105 \ mm$, L= 350 mm, W= 400 mm, $S_i = 6.22$

$$A = \frac{1.92\frac{h_{rt}}{L}}{\sqrt{1+\frac{2L}{W}}} = \frac{1.92\frac{105}{350}}{\sqrt{1+\frac{2(350)}{400}}} \qquad B = \frac{2.67}{(S_i+2)(1+\frac{L}{4W})} = \frac{2.67}{(6.22+2)(1+\frac{350}{4(400)})}$$
$$A = 0.347 \qquad B = 0.267$$
$$2A = 0.695$$

No se cumple que 2A sea menor que B, por lo tanto se analizará el esfuerzo promedio debido a la carga total:

$$\frac{GS_i}{2A - B} = \frac{0.5513x6.22}{0.695 - 0.267} = 8.01 \, N/mm2$$
$$\sigma_s = \frac{559360 + 449620}{350x400} = 7.21 < 8.01 \, N/mm2 \rightarrow OK$$

3.4.4.4. Acero de refuerzo

La AASHTO establece que el espesor mínimo de las capas de acero, *hs*, deberá ser de 1.5 mm. El espesor *hs* deberá satisfacer:

En el estado límite de servicio:

$$h_s \ge \frac{3h_{ri}\sigma_s}{F_y}$$

En el estado límite de fatiga:

$$h_s \ge \frac{2h_{ri}\sigma_L}{\Delta F_{TH}}$$

Donde:

 ΔF_{TH} = Constante de amplitud de fatiga para la categoría A, como se especifica en el artículo 6.6 de las especificaciones de la AASHTO (N/mm²)

 h_{ri} = Espesor de la i-ésima capa interna de elastómero (mm)

 σ_L = Esfuerzo de compresión promedio en el estado límite de servicio debido a la carga viva (N/mm²)

 σ_s = Esfuerzo de compresión promedio en el estado límite de servicio debido a la carga total (N/mm²)

Fy = Esfuerzo de fluencia de las placas de acero (N/mm²)

Calculamos:

$$\sigma_s = \frac{559360 + 449620}{350x400} = 7.21 \text{ N/mm2}$$

$$\sigma_L = \frac{449620}{350x400} = 3.21 \text{ N/mm2}$$

$$\frac{3h_{ri}\sigma_s}{F_y} = \frac{3x15x7.21}{344.82} = 0.94 \text{ mm}$$

$$\frac{2h_{ri}\sigma_L}{\Delta F_{TH}} = \frac{2x15x3.21}{165.79} = 0.58 \text{mm}$$

Elegimos el espesor mínimo especificado de 1.5mm

En resumen, se elige un apoyo elastomérico de dureza 60, de L=350 mm, W=400 mm, con un espesor total de 114 mm conformado por: 7 capas de elastómero de neopreno de 15 mm y 6 planchas de refuerzo de 1.5 mm G50.

3.4.4.5. Deflexión debido a la compresión

Se debe verificar también la deflexión debido a la compresión, para asegurar que no ocurran deflexiones excesivas que dañen las juntas o que generen un desnivel en la superficie de rodadura que podría dificultar el tráfico vehicular. La AASHTO recomienda limitar la deformación vertical debido a la carga viva a 3 mm.

Las deformaciones debido a la carga viva deberán tomarse como:

$$\delta_L = \sum \varepsilon_{Lih_{ri}}$$

Las deformaciones debido a la carga muerta inicial deberán tomarse como:

$$\delta_d = \sum \varepsilon_{di} h_{ri}$$

Las deformaciones debido a la carga muerta a largo plazo (incluyendo efectos de creep) deberán tomarse como:

$$\delta_{lt} = \delta_d + a_r \delta_d$$

Donde:

 h_{ri} = Espesor de la i-ésima capa de elastómero.

 ε_{Li} = Deformación unitaria debido a la carga viva instantánea en la i-ésima capa de elastómero.

 ε_{di} = Deformación unitaria debido a la carga muerta inicial en la i-ésima capa de elastómero.

 a_r = Deflexión debido al creep dividida entre la deflexión inicial debida a carga muerta. Pueden usarse los valores de la tabla 14.7.6.2-1 de las especificaciones de la AASHTO.

Para hallar las deformaciones unitarias, se utilizará la Curvas de esfuerzo de compresión vs Deformación unitaria para apoyos elastoméricos de dureza 60. Tomado de la Figura C14.7.6.3.3-1 de las especificaciones de la AASHTO. La gráfica muestra las curvas Esfuerzo de compresión vs Deformación unitaria para un elastómero de dureza 60. Dado que se tiene un factor de forma de 6.22, se interpolará entre los valores obtenidos para las curvas de factor de forma de 9 y 6.

 σ_L = 3.21 N/mm2 = 0.466 KSI σ_D = 4.0 N/mm2 = 0.58 KSI S_i = 6.22 ε_{Li} = 2.58% = 0.0258 ε_{di} = 4.42% = 0.0281 a_r = 0.35

Las deformaciones debido a compresión serán:

$$\begin{split} \delta_L &= 0.0258 x 15 x 7 = 2.71 \ mm < 3 \ mm \\ \delta_d &= 0.0281 x 15 x 7 = 2.95 \ mm \\ \delta_{lt} &= 2.95 + 2.95 x 0.35 = 3.98 \ mm \end{split}$$

La deformación total será:

$$\delta_{total} = 2.71 \ mm + 3.98 \ mm = 6.69 \rightarrow Aceptable$$

3.4.4.6. Pernos de anclaje

Para el caso de los apoyos fijos, los pernos de anclaje deberán soportar las cargas sísmicas provenientes de la superestructura y las fuerzas de frenado. El artículo 3.10.4.2 de las especificaciones de la AASHTO establece que el valor de *As* deberá tomarse como el producto de la aceleración pico del suelo y el factor de modificación por el tipo de suelo. Utilizando una aceleración pico del suelo de 0.4 y un coeficiente por condiciones locales de 1.0, tenemos:

$$A_{s} = 0.4$$

Hallamos el peso total del puente, *Ppuente*, a partir de las cargas permanentes por metro de longitud:

$$P_{puente} = (26.37(5) + 3.97(5) + 37.09(2) + 2.81(2))(72) + 0.5886(36)$$

$$P_{puente} = 16689.19 \, kN$$

La carga sísmica total será: $0.4(16689.19) = 6675.68 \, kN$

A esta fuerza se le adiciona la fuerza de frenado, tomada como el 25% de las cargas verticales de cada uno de los ejes del camión. Como existen 2 camiones que van en el mismo sentido, se utilizará la carga de frenado de 2 camiones, y se le aplicará un factor de carga de 0.5:

$$6675.68 + 0.25(35 + 145 + 145)(2) = 6838.18 \, kN$$

Para el caso de la carga sísmica paralela al eje longitudinal del puente, dicha carga se repartirá únicamente entre los apoyos fijos. Por lo tanto cada apoyo tomará:

$$\frac{6838.18}{7} = 976.88 \ kN$$

Para el caso de la carga sísmica perpendicular al eje longitudinal del puente, dicha carga se repartirá entre todos los apoyos. Por lo tanto cada apoyo tomará:

$$\frac{6838.18}{28} = 244.22 \ kN$$

Por otro lado, para poder utilizar ambas fuerzas en simultáneo, el artículo 3.10.8 de las especificaciones de la AASHTO establece que se debe usar el 100% de la fuerza en una de las direcciones perpendiculares, combinada con el 30% de la fuerza en la segunda dirección perpendicular. Combinando ambas fuerzas tenemos:

$$V_{u \ tot} = \sqrt{976.88^2 + (0.3x244.22)^2} = 979.62 \ kN$$

La resistencia nominal al corte de un perno se calcula mediante la ecuación:

$$V_n = 0.38A_b F_{ub}$$

(Ec. 6.13.2.12-1 de las especificaciones de la AASHTO)

El factor de resistencia ϕ será de 1.0 para evento extremo. Utilizando 2 pernos de 2 1/4" (A = 1551.79 cm²):

$$\emptyset V_n = 1(0.38)(2)(2565.21)(517) = 1007.92 \ kN > 979.62 \ kN \rightarrow OK$$

Verificamos también la resistencia al aplastamiento de la placa base. La AASHTO recomienda utilizar un espesor de por lo menos 1 ½", para evitar que el calor producido al soldar la placa con el alma inferior de la viga afecte al elastómero.

Diámetro del perno: d = 57.15 mm Espesor de la placa: t = 38.10 mm Esfuerzo de rotura de la placa: Fu= 448.32 N/mm² #pernos = 2

Dado que existe una distancia libre entre la placa de base y el borde del estribo (igual al espesor del apoyo elastomérico), los pernos estarán sujetos a un momento flector, producto de la fuerza cortante por el espesor del apoyo elastomérico. Por lo tanto se debe evaluar también la capacidad flexionante del perno.

La inercia del perno es: $I = \frac{\pi (57.15)^4}{64} = 523642.44 \ mm^4$

Considerando un factor de carga ϕ = 1, y un esfuerzo de fluencia *Fy* = 379.16 N/ m*m*2, el momento resistente del perno será su momento de fluencia:

$$\phi M_y = \frac{F_y I}{c} = \frac{379.16(523642.44)}{57.15/2} = 6948.18 \ kN - mm$$

El cortante que toma cada perno será:

$$V_{u\,c/perno} = \frac{201.84}{2} = 100.92 \ kN$$

Por lo tanto, el máximo brazo de palanca que puede haber es:

$$Brazo\ maximo = \frac{6948.18}{100.92} = 68.85\ mm$$

La distancia libre entre la placa de base y la superficie del estribo es de 114 mm. Esta distancia resulta excesiva como brazo de palanca, por lo tanto se le soldarán placas de corte de 1 7/8" de espesor, con lo cual el brazo de palanca será:

$$Brazo = 114 - (1.875x25.4) = 66.38 mm < 68.85 mm \rightarrow OK$$

Será necesario verificar además la resistencia del anclaje ante el cortante en la dirección perpendicular al eje del puente, considerando la resistencia del concreto a la rotura debido al cortante transmitido por los pernos:

$$V_u = 976.88 \ kN$$

Resistencia al corte de los pernos

$$\emptyset V_{n1} = 1007.922 \ kN$$

Resistencia a la rotura del concreto debido a los pernos sometidos a corte Considerando una longitud del anclaje hef = 300 mm y una distancia al borde del estribo ca1 = 35:

$$A_{vco} = 4.5c_a^2 = 4.5(350^2) = 551250 \ mm^2$$

Considerando que la distancia entre los pernos es de 48 cm

$$A_{vc} = 1.5(350)(3x350 + 480) = 803250 \ mm^2$$

$$V_b = 1.86 \left(\frac{h_{ef}}{d}\right)^{0.2} \sqrt{d} \sqrt{f_c} c_a^{1.5} = 1.86 \left(\frac{30}{5.715}\right)^{0.2} \sqrt{5.715} \sqrt{280} (35)^{1.5}$$
$$V_b = 21464.62 \ kg$$
$$V_b = 21056789 \ N = 210.57 \ kN$$

$$\psi_{ec,V} = 1$$
 $\psi_{ed,V} = 1$ $\psi_{c,V} = 1.4$ $\psi_{h,V} = 1$

$$V_{cbg} = \frac{A_{vc}}{A_{vco}} \psi_{ec,V} \psi_{ed,V} \psi_{c,V \ \psi_{h,V}}$$
$$V_b = \frac{803250}{551250} x 1x 1x 1.4 x 1x 210.57 = 429.56 \ kN$$

Considerando un factor de resistencia de 1 para evento extremo:

$$\emptyset V_{n2} = 1(429.56) = 429.56 \ kN$$

Resistencia al arranque de los pernos sometidos a corte

$$A_{NCO} = 9h_{ef}^{2} = 9(300)^{2} = 810000 \ mm2$$

$$A_{NC} = (350 + 1.5(300))(3(300) + 480) = 1104000 \ mm2$$

$$N_{b} = 10.2\sqrt{f_{c}}h_{ef}^{1.5} = 10.2\sqrt{280}(30)^{1.5} = 28045.36 \ kg = 275.13 \ kN$$

$$\psi_{ec,N} = 1 \qquad \psi_{c,N} = 1.25 \qquad \psi_{cp,N} = 1$$

$$\psi_{ed,N} = 0.7 + 0.3\frac{c_{a.min}}{1.5h_{ef}} = 0.7 + 0.3\frac{35}{1.5(30)} = 0.933$$

$$N_{cbg} = \frac{A_{NC}}{A_{NCO}}\psi_{ec,N}\psi_{ed,N}\psi_{c,N}\psi_{cp,N} \ N_{b} = \frac{810000}{1104000}1x0.933 \ x1.25x1x275.13$$

$$= 235.42 \ kN$$

$$\psi_{cpg} = k_{cp}N_{cbg} = 2x235.42 = 470.84 \ kN$$

La resistencia al corte del anclaje será la menor de las resistencias previamente halladas:

$$\emptyset V_{nb} = 429.56 > V_u = 244.22 \ kN \to OK$$
3.5 Diseño de Diafragmas

Los diafragmas de un puente cumplen distintas funciones, entre ellas ayudar a que las cargas verticales tengan una mejor distribución entre las vigas principales y transferir las cargas horizontales del tablero a los apoyos.

La condición que gobernará el diseño de los diafragmas, será la transferencia de cargas laterales debido al sismo, del tablero a los apoyos. Como se observa en la Figura 49, cuando se produzca una carga lateral sísmica en dirección perpendicular al eje del puente, dicha carga deberá llegar a los apoyos a través de las vigas principales, por lo cual las almas de estas vigas se doblarán. Se diseñarán los diafragmas para que puedan transferir estas cargas a los apoyos. Los diafragmas tendrán una disposición tipo "K" como se muestra en la Figura 56.

Figura 56. Comportamiento de las vigas principales sin diafragma ante cargas sísmicas.

Figura 57. Disposición de diafragmas. Fuente: Diseño de un puente con estructura de acero. Acevedo, M.

Realizamos un análisis de los diafragmas en el programa SAP2000 aplicando las cargas horizontales de sismo para cada apoyo.

3.5.1 Diseño de las diagonales

Elegimos un ángulo L 3"x3"x5/16", y verificamos su resistencia a la compresión y a la tracción.

3.5.1.1 Resistencia a la compresión

La carga de diseño obtenida a partir del análisis realizado es:

$$P_u = 74.98 \, kN$$

La resistencia a la compresión factorizada, Pr, debe tomarse como:

$$P_r = \emptyset_c P_n$$

(Ec. 6.9.2.1-1 de las especificaciones de la AASHTO)

Donde:

 P_n = Resistencia nominal a la compresión.

 ϕ_c = Factor de resistencia a la compresión, igual a 0.90 para el estado límite de resistencia y 1.0 para el estado límite de evento extremo.

La resistencia nominal se determinara como sigue:

- Si $\frac{P_e}{P_o} \ge 0.44$, entonces:

$$P_n = \left(0.658^{\frac{P_o}{P_e}}\right) P_n$$

(Ec. 6.9.4.1.1-1 de las especificaciones de la AASHTO)

- Si $\frac{P_e}{P_o}$ < 0.44, entonces:

$$P_n = 0.877 P_e$$

(Ec. 6.9.4.1.1-2 de las especificaciones de la AASHTO)

Donde:

Ag =Área transversal de la sección (mm²)

Po = Resistencia nominal a la fluencia = FyAg (N)

Fy = Resistencia mínima a la fluencia (N/mm²)

Pe = Resistencia crítica al pandeo elástico, para pandeo de flexión o para pandeo flexo-torsional, según sea el caso.

El artículo 6.9.4.4 de las especificaciones de la AASHTO establece que, para ángulos simples sujetos a compresión, que están conectados en sus extremos sólo a través de una de sus patas, se pueden despreciar los momentos generados en sus extremos debido a la excentricidad de la conexión, y se puede analizar únicamente el estado límite de pandeo de flexión, si para el cálculo de la resistencia se utiliza una esbeltez efectiva (Kl/r) en vez de la esbeltez real Kl/r. La esbeltez efectiva para ángulos de patas iguales debe calcularse como:

- Si $\frac{l}{r_x} \le 80$, entonces:

$$\left(\frac{Kl}{r}\right)_{ef} = 72 + 0.75 \frac{l}{r_x}$$

(Ec. 6.9.4.4-1 de las especificaciones de la AASHTO)

- Si $\frac{l}{r_x}$ > 80, entonces:

$$\left(\frac{Kl}{r}\right)_{ef} = 32 + 1.25\frac{l}{r_x}$$

(Ec. 6.9.4.4-2 de las especificaciones de la AASHTO)

Para el ángulo L 3"x3"x5/16" se tiene:

$$l = 1600 mm$$

$$r_x = 23.3 mm$$

$$\frac{l}{r_x} = 68.67 < 80$$

$$\left(\frac{Kl}{r}\right)_{ef} = 72 + 0.75(68.67) = 123.5$$

El pandeo de flexión es un modo de pandeo en el cual el miembro se deflecta lateralmente sin torcerse o cambiar su sección transversal. La resistencia al pandeo elástico, basándose en pandeo de flexión, debe tomarse como:

$$P_e = \frac{\pi^2 E}{\left(\frac{Kl}{r_s}\right)^2} Ag$$

(Ec. 6.9.4.1.2-1 de las especificaciones de la AASHTO

Donde:

Ag =Área transversal de la sección (mm²)

K = Factor de longitud efectiva en el plano de pandeo.

l = Longitud sin soporte en el plano de pandeo (mm)

rs = Radio de giro alrededor del eje de pandeo considerado.

Para el ángulo L 3"x3"x5/16":

$$Ag = 1148 \ mm2$$

$$Fy = 344.82 \frac{N}{mm2}$$

 $Po = 395980.65 \ kN$

$$P_e = \frac{\pi^2 x 199996.50}{(123.5)^2} (1148) = 148569.65 \ kN$$
$$P_n = 0.877 (148569.65) = 130295.58 \ kN$$
$$\frac{P_e}{P_o} = 0.375 \ < 0.44 \ \text{entonces:}$$
$$\phi_c P_n = 130.30 \ kN \ > P_\mu = 74.98 \ kN \to OK$$

3.5.1.2 Resistencia a la tensión

La carga de diseño obtenida a partir del análisis realizado es:

$$P_u = 74,98 \ kN$$

Fluencia de la sección bruta

La resistencia factorizada a la fluencia de la sección bruta, *P r*, debe tomarse como:

$$P_r = \phi_u P_{nu} = \phi_u F_u A_n U$$

(Ec. 6.8.2.1-2 de las especificaciones de la AASHTO)

Donde:

Pnu = Resistencia nominal a la tensión por fracción de la sección efectiva.(kN)

 ϕu = Factor de resistencia para fractura de miembros a tensión, igual a 0.80 para el estado límite de resistencia y 1.0 para el estado límite de evento extremo.

Fu = Resistencia a la tensión (N/mm²)

An =Área neta de la sección transversal del miembro (mm²)

U = Factor de reducción para tomar en cuenta el retraso de cortante. Deberá tomarse como:

$$U = 1 - \frac{x}{L}$$

Siendo:

x = Excentricidad de la conexión (mm)

L = Longitud de la conexión (mm)

Tenemos:

 $\phi u = 1.0$

 $Fu = 448.32 \text{ N/mm}^2$

Fuente: Elaboración Propia

 $Ag = 1148 \text{ mm}^2$ $An = Ag = 1148 \text{ mm}^2$ $x = 21.8 \text{ mm} L = 84 \text{ mm} \rightarrow U = 0.74$

 $P_r = 448.32 x 1148 x 0.74 = 380.86 \ kN > \ P_u = 74.98 \ kN \rightarrow OK$

Soldadura de la conexión viga – diagonal

Se utilizará soldadura de filete, cuya resistencia está dada por la ecuación:

$$\phi R_n = \phi_{e2} 0.6 F_{EXX} \frac{\sqrt{2}}{2} (D+l)$$

Donde:

 ϕe^2 = Factor de resistencia, igual a 1 para evento extremo.

FEXX = Resistencia mínima a la tensión de la soldadura, igual a 482.65 N/mm²

D = Tamaño de la soldadura (mm)

l = Longitud de la soldadura (mm)

A las longitudes mostradas en la Figura 58 se les restará 1 cm a cada lado, para despreciar el aporte de las terminaciones y las esquinas.

Resistencia de la soldadura paralela a la carga:

Resistencia de la soldadura perpendicular a la carga:

Despreciando el incremento de resistencia de la soldadura perpendicular a la carga debido a su orientación, la resistencia de la soldadura será:

3.5.1.3 Pernos de la conexión viga – diagonal

3.5.1.3.1 Resistencia al corte

Se utilizarán pernos de alta resistencia ASTM A325: Fu = 824 N/mm². La resistencia nominal al corte de un perno se calcula mediante la ecuación presentada en el acápite 9.2.4.2.1 (p. 65). Utilizando 4 pernos de 1/2":

$$\emptyset V_n = 0.75 \times 0.38 \times (129 \times 4) \times 824 = 121.18 \ kN > P_u = 74.98 \ kN \to OK$$

3.5.1.3.2. Resistencia al aplastamiento

Se calcula la resistencia al aplastamiento de la placa de la conexión. Se utilizará una placa de 3/4". Dado que la separación entre pernos y la distancia entre el perno y el borde son mayores a 2d = 2.54cm (Ver Figura 41), calculamos la resistencia al aplastamiento de la placa mediante la ecuación:

3.6 DISEÑO DE ESTRIBO

Se diseñará el estribo como un muro de semi-gravedad en volado, capaz de soportar los empujes del suelo y las cargas provenientes del tablero; también se tomará en cuenta la fuerza sísmica proveniente de la superestructura, por lo cual se analizarán los estados límites de Resistencia I y Evento Extremo I.

Datos del puente.

Altura del puente = 7000 mm.

Ancho de calzada = 16500 mm.

Sobrecarga vehicular = HL-93

Separación ente vigas =2400 mm.

3.6.1 Geometría del puente.

Según la concepción del modelo estructural, el puente será de tres tramos, los apoyos extremos serán fijos y los apoyos centrales serán articulados.

3.6.2 Propiedades de los materiales Densidad del concreto $W_c = 2400 \text{ kg/m}^3$ Resistencia a la compresión del concreto a los 28 días f'c = 28 MPa Resistencia del refuerzo de acero $f_y = 420 \text{ MPa}$

Recubrimiento de los refuerzos de acero [A5.12.3-1]

Recubrimiento de la pantalla superior = 50 mm

Recubrimiento del alma o cuerpo = 60 mm

Recubrimiento de la cara superior de la fundación = 60 mm

Recubrimiento de la cara inferior de la fundación = 60 mm

Propiedades del suelo de fundación y suelo de relleno

Capacidad ultima del suelo $q_{ult} = 4 \text{ kg/cm}^2$

Densidad del suelo $\gamma_s = 1900 \text{ kg/m}^3$

Angulo de fricción $\phi = 30^{\circ}$

Coeficiente de fricción entre el concreto y el suelo $\mu = 0.55$

3.6.3. Dimensiones Preliminares

Altura del estribo H = 8200 mm (desde fondo de fundación)

Longitud de la puntera, puede ser de H/6 a H/4 = 1300 a 2000 mm, para este puente tomaremos

Lp = 2000 m

Espesor del alma, puede ser de H/12 a H/8 = 700 a 1000 mm, para este puente tomaremos

$$t_a = 1000 \text{ mm}$$

Longitud del talón, puede ser de H/6 a H/3 = 1300 a 2700 m, para este puente tomaremos

$$L_t = 4000 \text{ mm}$$

Base de la fundación, es la suma de la puntera, alma y talón. $B_f = 7000 \text{ mm}$

Espesor de la base de fundación, puede ser < 0.7 Lp, para este puente tomaremos

$$t_{Bf} = 1400 \text{ mm}$$

3.6.4. Cargas de Suelo (EH) (LS)

Las cargas de suelo que necesitan ser investigadas para este diseño, incluyen las cargas debido a la presión lateral básica del suelo, cargas debido a la sobrecarga uniforme y sobrecarga viva. Cargas debido a la presión lateral básica del suelo según AASHTO LRFD [A3.11.5.1]. [4]

Se calcularán los coeficientes de empuje activo y pasivo, Tomando un valor de θ de 90, considerando el relleno horizontal (β = 0) y despreciando el valor de δ , el valor del coeficiente de empuje activo es:

El coeficiente de empuje lateral activo se lo encuentra según AASHTO LRFD [A3.11.5.3], se puede tomar como: [1]

El coeficiente de empuje lateral activo se puede tomar como:

$$k_{a} = \frac{\sin^{2}(\theta + \phi' f)}{\Gamma[\sin^{2}(\theta)\sin(\theta - \delta)]}$$

Dónde:

$$\Gamma = \left[1 + \sqrt{\frac{\sin(\emptyset' f + \delta)\sin(\emptyset' f - \beta)}{\sin(\theta - \delta)\sin(\theta + \beta)}}\right]^2$$

Entonces en el caso que tenemos:

$$\delta = 0$$

$$\beta = 0$$

$$\theta = 90^{\circ}$$

$$\emptyset'f = 30^{\circ}$$

$$\Gamma = \left[1 + \sqrt{\frac{\sin(30)\sin(30)}{\sin(90)}}\right]^{2} = 2.25$$

$$k_{a} = \frac{\sin^{2}(120)}{2.25[\sin^{2}(90)\sin(90)]} = 0.33$$

Para el coeficiente del empuje pasivo se determinó de la Figura 6.

$$k_p = 6.5 * 0.467 = 3$$

Cargas actuantes en el muro:

Empuje activo:

$$E_{A} = \frac{k_{a} \cdot \gamma_{suelo} \cdot H^{2}}{2} = \frac{0.33 * 1900 * 8.2^{2}}{2} = 21079.74 \text{ kg} = 206.79 \text{ Kn}$$

Cargas debido a sobrecarga viva, (LS), según AASHTO LRFD [A3.11.6.4].

Las cargas debido a sobrecarga viva para el análisis de estribos, los efectos de la sobrecarga producida por el tráfico actuando en la superficie

del relleno pueden estimarse considerando una altura de suelo equivalente determinado por la tabla 17.

Altura del estribo (mm)	h_{eq} (mm)
1500	1200
3000	900
\geq 6000	600

Tabla 17. Altura de suelo equivalente para carga vehicular sobre estribos perpendiculares al tráfico.

Fuente: De las especificaciones AASHTO LRFD

$$s/c = 0.60 * 1900 = 1140 \text{kg/m}^2 = 11.18 \text{Kn/m}^2$$

3.6.5. Cargas Permanentes (DW) (DC)

Cargas provenientes de la superestructura: Para calcular las cargas provenientes de la superestructura, dividiremos las cargas previamente halladas del peso de la superestructura, la fuerza horizontal de sismo y la fuerza de frenado, entre el ancho del puente de 16.50 m:

Peso de la superestructura $P_V = \frac{16689.19}{16.50} = 1011.47 \text{ Kn}$

3.6.6. Cargas de Sismo (EQ)

Según el artículo AASHTO LRFD (3.10.1)

Las cargas sísmicas son el producto del coeficiente Csm, por el peso equivalente de la superestructura.

Los requisitos aquí especificados se deberán aplicar para puentes con superestructuras de losas convencionales, vigas de alma llena cuyas longitudes no sean mayores que 150 000 mm. El coeficiente de aceleración específico se obtiene del manual de diseño de puentes establecido por el Ministerio de Transporte Y Comunicaciones.

A= 0.40 g (aceleración de la roca)

S= 1 (por características locales)

Fuerza de sismo $F_{sis} = \frac{0.40*16689.19}{16.50} = 404.58 \text{ Kn}$

3.6.7. Cargas de Frenado (BR)

Fuerza de frenado

$$BR = 0.25 * (145 + 145 + 35) = 81.25 Kn$$

Fuerza de frenado por 2 ejes

$$BR = \frac{81.25 * 2}{16.50} = 9.85 \text{ Kn}$$

3.6.8. Estabilidad del estribo:

La AASHTO especifica que la resistencia al volteo, la capacidad portante del suelo, y la resistencia al deslizamiento, se deben verificar para los estados límite de Resistencia y Evento Extremo. Las combinaciones de carga para cada caso se muestran en la Tabla 18.

Al verificar el volteo y el deslizamiento para el estado límite de resistencia I, se considerarán los factores de carga mínimos de 1.0 y 0.9 para las cargas del peso del suelo y el peso propio del muro, respectivamente, ya que estas cargan aportan resistencia al volteo y deslizamiento. Además, para el caso del volteo y el deslizamiento, sólo se considerará el empuje horizontal debido a la sobrecarga superficial, pero no la sobrecarga vertical sobre el relleno, ya que ésta también aporta resistencia contra el volteo y deslizamiento (Ver figura 52.).⁹

⁹ Acevedo Laos, M. (2015). Diseño de un puente con estructura de acero. Perú

	Estado Límite	Combinación de carga		
Volteo	Resistencia I	0.9DC + 1.0EV + 1.5EH+1.75BR+1.75LS		
	Evento Extremo I	1.0DC+1.0EV+1.0EH+0.5BR+0.5LS+1.0EQ		
Capacidad	Resistencia I	1.25DC+1.35EV+1.5EH+1.75BR+1.75LS		
suelo	Evento Extremo I	1.0DC+1.0EV+1.0EH+0.5BR+0.5LS+1.0EQ		
Deslizamiento	Resistencia I	0.9DC+1.0EV+1.5EH+1.75BR+1.75LS		
Deslizamiento	Evento Extremo I	1.0DC+1.0EV+1.0EH+0.5BR+0.5LS+1.0EQ		
Donde:				
DC: Carga Muerta		BR: Carga de frenado		
EV: Empuje Vertica	l del suelo	LS: Carga viva superficial		
EH: Empuje Horizo	ntal del suelo	EQ : Carga de sismo		

Tabla 18. Estados límites

Fuente: De las especificaciones AASHTO LRFD

Figura 59. Sobrecarga sobre el relleno.

Fuente: De las especificaciones AASHTO LRFD

3.6.8.1. Resistencia al volteo

La AASHTO especifica que la resultante de las fuerzas debe situarse dentro de los dos tercios centrales del ancho de la base. Esto implica que el límite de la excentricidad de la resultante de las cargas amplificadas será de B/3.¹⁰

3.6.8.1.1. Para el estado límite Resistencia I

Se hace el cálculo de momentos factorizados (multiplicados por los factores del estado límite Resistencia I) respecto al centro de la zapata o fundación en la parte inferior tanto para fuerzas verticales y horizontales como se muestra en las tablas 19 y 20 respectivamente.

Cargas verticales en el estado límite Resistencia I								
Elemento	Volumen	Pero (Kn)	Factor de	Peso	Brazo (m)	Momento factorizado		
Liemento	(m3)	Peso (KII)	carga	factorizado	B1 a20 (111)	(Kn-m)		
1	3.93	92.53	0.90	83.28	-0.90	-74.95		
2	0.96	22.60	0.90	20.34	-0.38	-7.73		
3	9.10	214.25	0.90	192.83	0.00	0.00		
4	24.70	460.38	1.00	460.38	1.53	704.39		
5	2.00	37.28	1.00	37.28	-2.25	-83.88		
Carga vertical proveniente de la superestructura								
P_V		1011.47	0.90	910.32	-0.90	-819.29		
			TOTAL	1704.43	TOTAL	-281.46		

Tabla 19. Momentos debido a fuerzas verticales.

Fuente: elaboración propia

	Cargas horizontales en el estado límite Resistencia I							
Cargo	Fuerza (Kn)	Factor de	Peso Duran (m)		Momento factorizado			
Carga		carga	factorizado	DI 820 (111)	(Kn-m)			
Ea	206.79	1.50	310.19	-2.73	-846.81			
$E_{S/C}$	41.09	1.75	71.91	-4.10	-294.82			
F_{BR}	9.85	1.75	17.24	-6.15	-106.01			
				TOTAL	-1247.64			

Tabla 20. Momentos debido a fuerzas Horizontales.

Fuente: elaboración propia

¹⁰ AASHTO LRFD, (2010). Especificaciones técnicas para diseño de puentes.

Carga vertical factorizada resultante: 1704.43

Momento factorizado resultante: -281.46-1247.64=-1529.10 Kn-m

$$e = \left| \frac{-1529.10}{1704.43} \right| < \frac{B}{3}$$
$$e = 0.90 \text{ m} < \frac{6.50}{3} = 2.17 \text{ m} \quad \text{OK}$$

3.6.8.1.2. Para el estado límite Evento Extremo I

Se hace el cálculo de momentos factorizados (multiplicados por los factores del estado límite Evento Extremo I) respecto al centro de la zapata o fundación en la parte inferior tanto para fuerzas verticales y horizontales como se muestra en las tablas 21 y 22 respectivamente.

Cargas verticales en el estado límite Evento Extremo I								
Elemento	Volumen	Baco (Kn)	Factor de	Peso	Prazo (m)	Momento <mark>f</mark> actorizado		
Liemento	(m3)	Peso (KII)	carga	factorizado	B1 a20 (111)	(Kn-m)		
1	3.93	92.53	1.00	92.53	-0.90	-83.28		
2	0.96	22.60	1.00	22.60	-0.38	-8.59		
3	9.10	214.25	1.00	214.25	0.00	0.00		
4	24.70	460.38	1.00	460.38	1.53	704.39		
5	2.00	37.28	1.00	37.28	-2.25	-83.88		
Carga vertical proveniente de la superestructura								
P_V		1011.47	1.00	1011.47	-0.90	-910.32		
				1838.51	TOTAL	-381.68		

Tabla 21. Momentos debido a fuerzas verticales.

Cargas horizontales en el estado Evento Extremo I								
6		Factor de	Peso	Brazo (m)	Momento <mark>f</mark> actorizado			
Carga	Fuerza (KII)	carga	factorizado	Brazo (m)	(Kn-m)			
E_a	206.79	1.00	206.79	-2.73	-564.54			
$E_{S/C}$	41.09	0.50	20.55	-4.10	-84.23			
F_{BR}	9.85	0.50	4.93	-6.15	-30.29			
F_{SIS}	404.58	1.00	404.58	-6.15	-2488.17			
				TOTAL	-3167.23			
	Carga E_a $E_{S/C}$ F_{BR} F_{SIS}	CargasCargaFuerza (Kn) E_a 206.79 $E_{S/C}$ 41.09 F_{BR} 9.85 F_{SIS} 404.58	$\begin{array}{c c c c c c c } \hline & & & & & & & & & \\ \hline Carga & Fuerza (Kn) & Factor de \\ \hline carga \\ \hline E_a & 206.79 & 1.00 \\ \hline E_{S/C} & 41.09 & 0.50 \\ \hline F_{BR} & 9.85 & 0.50 \\ \hline F_{SIS} & 404.58 & 1.00 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c } \hline \textbf{Cargas} & \textbf{brizontales en el estado E} \\ \hline \textbf{Carga} & \textbf{Fuerza (Kn)} & \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c } \hline Cargas & horizontales en el estado Evento Extrem \\ \hline Carga & Fuerza (Kn) & Factor de & Peso & Brazo (m) \\ \hline Carga & factorizado & factorizado \\ \hline E_a & 206.79 & 1.00 & 206.79 & -2.73 \\ \hline E_{S/C} & 41.09 & 0.50 & 20.55 & -4.10 \\ \hline F_{BR} & 9.85 & 0.50 & 4.93 & -6.15 \\ \hline F_{SIS} & 404.58 & 1.00 & 404.58 & -6.15 \\ \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$			

Fuente: elaboración propia

Tabla 22. Momentos debido a fuerzas Horizontales.

Fuente: elaboración propia

Carga vertical factorizada resultante: 1838.51 kn

Momento factorizado resultante: -381.68-3167.23=-3548.91 kn-m

$$e = \left| \frac{-3548.91}{1838.51} \right| < \frac{B}{3}$$

$$e = 1.93 \text{ m} < \frac{6.50}{3} = 2.17 \text{ m}$$
 OK

3.6.8.2. Capacidad portante del suelo

La AASHTO especifica que a la resistencia del suelo se le deben aplicar los factores de resistencia de 0.55 para el estado límite de Resistencia y de 0.8 para el estado límite de Evento Extremo. La presión admisible del suelo proporcionada previamente ya cuenta con un factor de reducción de 1/3, por lo tanto la resistencia del suelo para cada estado límite será:¹¹

Para resistencia I:
$$\sigma_{max} = 4 * 3 * 0.55 = 6.6 \frac{\text{kg}}{\text{cm}^2} = 647.46 \text{ kn/m}^2$$

Para Evento Extremo I: $\sigma_{max} = 4 * 3 * 0.80 = 9.6 \frac{\text{kg}}{\text{cm}^2} = 941.76 \text{ kn/m}^2$

La presión vertical en el terreno está dada por:

$$\sigma_{\rm v} = \frac{\sum V}{B - 2e}$$

Dónde:

$$\sum$$
 V = suma de las fuerzas verticales

¹¹ AASHTO LRFD, (2010). Especificaciones técnicas para diseño de puentes.

3.6.8.2.1 Para el estado límite Resistencia I

Se hace el cálculo de momentos factorizados (multiplicados por los factores del estado límite Resistencia I) respecto al centro de la zapata o fundación en la parte inferior tanto para fuerzas verticales y horizontales como se muestra en las tablas 23 y 24 respectivamente. Similar al caso de volteo, pero aumentándole los efectos de la carga vertical debido a la sobrecarga superficial sobre el relleno:

Cargas verticales en el estado límite Resistencia I									
	Volumen	D (1)	Factor de	Peso	D ()	Momento factorizado			
Elemento	(m3)	Peso (kn)	carga	factorizado	Brazo (m)	(kn-m)			
1	3.93	92.53	1.25	115.66	-0.90	-104.09			
2	0.96	22.60	1.25	28.25	-0.38	-10.74			
3	9.10	214.25	1.25	267.81	0.00	0.00			
4	24.70	460.38	1.75	805.67	1.53	1232.68			
5	2.00	37.28	1.75	<mark>6</mark> 5.24	-2.25	-146.78			
	Carga vertical proveniente de la superestructura								
P_V		1011.47	1.25	1264.34	-0.90	-1137.90			
s/c		39.13	1.75	<mark>68.48</mark>	1.53	104.77			
			TOTAL	2615.45	TOTAL	-62.07			

Tabla 23. Momentos debido a fuerzas verticales.

Fuente: elaboración propia

	Cargas horizontales en el estado límite Resistencia I								
Carga	Fuerza (kp) Factor de		Peso	Brazo (m)	Momento factorizado				
Carga	Fuerza (KII)	carga	factorizado	Brazo (III)	(kn-m)				
E_a	206.79	1.50	310.19	-2.73	-846.81				
$E_{S/C}$	41.09	1.75	71.91	-4.10	-294.82				
F_{BR}	9.85	1.75	17.24	-6.15	-106.01				
				TOTAL	-1247.64				

Tabla 24. Momentos debido a fuerzas Horizontales.

Fuente: elaboración propia

Carga vertical factorizada resultante: 2615.45 kn

Momento factorizado resultante: -62.07-1247.64=-1309.71 kn-m

$$e = \left|\frac{-1309.71}{2615.45}\right| < \frac{B}{3}$$
$$e = 0.50 \text{ m} < \frac{6.50}{3} = 2.17 \text{ m} \quad \text{OK}$$
$$\sigma_v = \frac{2615.45}{(6.50 - 2 * 0.50)1} = 475.54 \text{ kn/m}^2 < 647.46 \text{ kn/m}^2$$

3.6.8.2.2. Para el estado límite Evento Extremo I

Se hace el cálculo de momentos factorizados (multiplicados por los factores del estado límite Evento Extremo I) respecto al centro de la zapata o fundación en la parte inferior tanto para fuerzas verticales y horizontales como se muestra en las tablas 25 y 26 respectivamente. Similar al caso de volteo, pero aumentándole los efectos de la carga vertical debido a la sobrecarga superficial sobre el relleno:

$\begin{tabular}{ c c c c c } \hline Cargas verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento Extremo I \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite Evento E \\ \hline Carga verticales en el estado límite E \\ \hline Carga verticales en el estado límite E \\ \hline Carga verticales en el estado límite E \\ \hline Carga verticales en el estado límite E \\ \hline Carga verticales en el estado límite E \\ \hline Carga verticales en el estado límite E \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en el estado límite e \\ \hline Carga verticales en e$										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Cargas verticales en el estado límite Evento Extremo I								
Image: constraint of the second state of t	Elemento	Volumen	Peso (kg)	Factor de	Peso	Brazo (m)	Momento factorizado			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Liemento	(m3)	Peso (kg)	carga	factorizado	Di a20 (111)	(kg-m)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1	3.93	92.53	1.00	92.53	-0.90	-83.28			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	0.96	22.60	1.00	22.60	-0.38	-8.59			
	3	9.10	214.25	1.00	214.25	0.00	0.00			
5 2.00 37.28 1.00 37.28 -2.25 -83.4 Carga vertical proveniente de la superestructura P _V 1011.47 1.00 1011.47 -0.90 -910.3 s/c 39.13 0.50 19.57 1.53 29.9	4	24.70	460.38	1.00	460.38	1.53	704.39			
Carga vertical proveniente de la superestructura P _V 1011.47 1.00 1011.47 -0.90 -910.3 s/c 39.13 0.50 19.57 1.53 29.3	5	2.00	37.28	1.00	37.28	-2.25	-83.88			
P _V 1011.47 1.00 1011.47 -0.90 -910.3 s/c 39.13 0.50 19.57 1.53 29.9		Carga vertical proveniente de la superestructura								
s/c 39.13 0.50 19.57 1.53 29.5	P_V		1011.47	1.00	1011.47	-0.90	-910.32			
	s/c		39.13	0.50	19.57	1.53	29.93			
			TOTAL	1858.08	TOTAL	-351.74				

Tabla 25. Momentos debido a fuerzas verticales.

Fuente: elaboración propia

	Cargas verticales en el estado límite Evento Extremo I							
Cargo	Euorza	Factor de	Peso	Praza (m)	Momento factorizado			
Carga	Fuerza	carga	factorizado	Brazo (m)	(kg-m)			
E_a	206.79	1.00	206.79	-2.73	-564.54			
$E_{S/C}$	41.09	0.50	20.55	-4.10	-84.23			
F_{BR}	9.85	0.50	4.93	-6.15	-30.29			
F _{SIS}	404.58	1	404.58	-6.15	-2488.167			
				TOTAL	-3167.23			

Tabla 26. Momentos debido a fuerzas Horizontales.

Fuente: elaboración propia

Carga vertical factorizada resultante: 1858.08 kn

Momento factorizado resultante: -351.74-3167.23=-3518.97 kn-m

$$\begin{split} e &= \left|\frac{-3518.97}{1858.08}\right| < \frac{B}{3} \\ e &= 1.89 \text{ m} < \frac{6.50}{3} = 2.17 \text{ m} \quad \text{OK} \\ \sigma_v &= \frac{1858.08}{(6.50-2*1.89)1} = 683.12 \text{ kn/m}^2 < 941.76 \text{ kn/m}^2 \end{split}$$

3.6.8.3. Chequeo por deslizamiento

La resistencia al deslizamiento está dada por la ecuación:

$$\emptyset R_n = \emptyset_\tau R_\tau + \emptyset_{ep} R_{ep}$$

Donde:

 R_n = Resistencia nominal al deslizamiento (kn)

 ϕ_{τ} = Factor de resistencia para el corte entre el suelo y la fundación. Ahora 0.8.

 R_{τ} = Resistencia nominal al deslizamiento entre el suelo y la fundación (kn)

 ϕ_{ep} = Factor de resistencia para el empuje pasivo, igual a 0.5.

 R_{ep} = Resistencia debido al empuje pasivo (kn)

3.6.8.3.1. Para el estado límite Resistencia I:

Para este caso, la situación más desfavorable se da cuando el estribo trabaja sin la presencia de la superestructura, por lo cual no consideraremos el peso de la superestructura ni la fuerza de frenado.

Cargas horizontales en el estado límite Resistencia I							
Carga	Euerza	Factor de	Peso				
Carga	Fuerza	carga	factorizado				
E_a	206.79	1.50	310.19				
$E_{S/C}$	41.09	1.75	71.91				
		TOTAL	382.09				

Tabla 27. Cargas horizontales actuantes.

Fuente: elaboración propia

Cargas verticales en el estado límite Resistencia I							
Flomento	Volumen		Factor de	Peso			
Elemento	(m3)	Peso (kg)	carga	factorizado			
1	3.93	92.53	0.90	83.28			
2	0.96	22.60	0.90	20.34			
3	9.10	214.25	0.90	192.83			
4	24.70	460.38	1.00	460.38			
5	2.00	37.28	1.00	37.28			
		TOTAL	794.10				

Tabla 28. Cargas verticales actuantes.

Fuente: elaboración propia

De la tabla 27. Se obtiene:

$$R_{\tau} = 0.55 * 794.10 = 436.76 \text{ kn}$$

Empuje pasivo:

$$R_{ep} = \frac{k_p \gamma_{suelo} h^2}{2} = \frac{3 * 1900 * (1 + 1.4)^2}{2} = 16416 \text{ kg} = 161.04 \text{ kn}$$
$$\emptyset R_n = \emptyset_\tau R_\tau + \emptyset_{ep} R_{ep} = 0.8 * 436.76 + 0.5 * 161.04 = 429.83 \text{ kn}$$
$$429.83 \text{ kn} > 382.09 \text{ kn} \text{ OK}$$

3.6.8.3.2. Para el segundo estado límite Evento Extremo I

Para este caso, se considera el peso de la superestructura y adicionando la fuerza debido a sismo.

Cargas horizontales en el estado Evento Extremo I						
Cargo	Euoraa	Factor de	Peso			
Carga	FuelZa	carga	factorizado			
E_a	206.79	1.00	206.79			
$E_{S/C}$	41.09	0.50	20.55			
F_{BR}	<mark>9</mark> .85	0.50	4.93			
F _{SIS}	404.58	1.00	404.58			
		TOTAL	636.84			

Tabla 29. Cargas horizontales actuantes.

Cargas verticales en el estado límite Evento Extremo I						
Flomonto	Volumen		Factor de	Peso		
Elemento	(m3)	Peso (kg)	carga	factorizado		
1	3.93	92.53	1.00	92.53		
2	0.96	22.60	1.00	22.60		
3	9.10	214.25	1.00	214.25		
4	24.70	460.38	1.00	460.38		
5	2.00	37.28	1.00	37.28		
Carga vertical proveniente de la superestructura						
P_V		1011.47	1.00	1011.47		
		TOTAL	1838.51			

Fuente: elaboración propia

Tabla 30. Cargas verticales actuantes.

Fuente: elaboración propia

De la tabla 30. Se obtiene:

$$R_{\tau} = 0.55 * 1838.51 = 1011.18 \text{ kn}$$

Empuje pasivo:

$$R_{ep} = \frac{k_p \gamma_{suelo} h^2}{2} = \frac{3 * 1900 * (1 + 1.4)^2}{2} = 16416 \text{ kg} = 161.04 \text{ km}$$

889.46 kn > 636.84 kn OK

3.6.9. Diseño de los elementos del estribo.

3.6.9.1. Diseño de muro (Cuerpo de Estribo)

El muro soportará el empuje de la tierra, la carga de frenado, y la fuerza de sismo, además de las cargas verticales provenientes de la superestructura y el peso propio del muro (ver tabla 31).

_						
	Elemento	Volumen	Peso (kn)	Factor de	Peso	
		(m3)		carga	factorizado	
	1	3.93	92.53	1.25	115.66	
	2	0.96	22.60	1.25	28.25	
	Carga vertical proveniente de la superestructura					
	P_V		1011.47	1.25	1264.34	
			TOTAL	1408.25		

Fuente: elaboración propia

Vemos que las cargas verticales factorizadas constituyen el 10% de la resistencia a la compresión de la base del muro, sin considerar el acero:

$$\frac{1408.25}{0.75*0.8*0.85*27468*1*1} = 0.10$$

Por lo tanto, podemos considerar que el muro se comporta principalmente como un elemento en flexión, por lo cual consideraremos para el diseño el estado límite de Evento Extremo I, dado que éste genera el mayor momento flector en el muro.¹²

Cargas horizontales en el estado Evento Extremo I						
Carga Euorza (k	Euorza (kp)	Factor de	Peso	Brazo (m)	Momento factorizado	
Carga	Fuerza (KII)	carga	factorizado		(kn-m)	
E_a	142.21	1.50	213.32	-2.27	-484.23	
$E_{S/C}$	37.17	0.50	18.59	-3.40	-63.19	
F _{BR}	9.85	0.50	4.93	-4.75	-23.39	
F _{SIS}	404.58	1.00	404.58	-4.75	-1921.76	
				TOTAL	-2492.56	

Tabla 32. Cargas horizontales actuantes.

Fuente: elaboración propia

Acero mínimo

¹²Acevedo Laos, M. (2015). Diseño de un puente con estructura de acero. Perú

El acero mínimo está dado por la ecuación:

$$A_{S} \ge \frac{760bh}{2(b+h)fy}$$

Donde:

 $A_{S} = A$ rea del acero de refuerzo en cada dirección y en cada cara (cm²/m)

b = Ancho de la sección (cm)

h = Espesor de la sección (cm)

fy = Esfuerzo de fluencia del acero de refuerzo (kg/cm^2)

$$A_{\rm S} \ge \frac{760 * 495 * 100}{2(495 + 100)4200} = 7.53 \, \rm{cm}^2/m$$

Con barras $\phi^5/_8$ $^{\prime\prime}$ (A_s = 1.99 cm^2) ~ 1 $\phi^5/_8$ $^{\prime\prime}$ @ 250 mm.

Diseño por flexión

Cálculo del acero de la cara en contacto con la tierra:

$$M_u = 2492.56 \text{ kn} - \text{m}$$

d = 94 cm

f'c = 280 kg/cm²

b = 100 cm

As = 77.08 cm²

Con barras $\phi 1\frac{3}{8}$ (A_S = 10.06 cm²) 1 $\phi 1\frac{3}{8}$ @ 125 mm. (Cara contacto a la tierra)

Cálculo del acero de la cara exterior:

Se calcula a partir del momento flector ocasionado por la fuerza de sismo y la carga de frenado proveniente de la superestructura, cuando estas fuerzas actúan en la dirección opuesta a los empujes de la tierra.¹³

$$M_u = 23.39 + 1921.79 = 1945.18 \text{ kn} - \text{m}$$

d = 94 cm

b = 100 cm

 $As = 59.32 \text{ cm}^2$

Con barras $\varphi 1 \frac{3}{8}$ (A_S = 10.06 cm²) 1 $\varphi 1 \frac{3}{8}$ @ 150 mm. (cara exterior) Verificación por cortante:

 $V_{\rm u} = 641.42 \ Kn$ $\Phi V_{\rm c} = 0.9 * 0.53 * \sqrt{280} * 100 * 94 = 75028.35 \ kg = 736.03 \ Kn$ $736.03 \ Kn > 641.42 \ Kn \ OK$

3.6.9.2. Diseño de la punta

$$A_{\rm S} \ge \frac{760 * 650 * 140}{2(495 + 140)4200} = 12.97 \text{ cm}^2/\text{m}$$

Con barras $\phi^3/_4$ $^{\prime\prime}$ (A_{_S} = 2.84 \ \rm{cm^2}) 1 $\phi^3/_4$ $^{\prime\prime}$ @ 200 mm.

Diseño por flexión

Aplicado para estado límite Evento Extremo I (caso más crítico)

¹³ Acevedo Laos, M. (2015). Diseño de un puente con estructura de acero. Perú

Cargas verticales en el estado límite Evento Extremo I								
Flomonto	Volumen	Dece (kn)	Factor de	Peso		Momento factorizado		
Elemento	(m3)	Peso (kli)	carga	factorizado	Dia20 (111)	(kn-m)		
1	3.93	92.53	1.25	115.66	-0.90	-104.09		
2	0.96	22.60	1.25	28.25	-0.38	-10.74		
3	9.10	214.25	1.25	267.81	0.00	0.00		
4	24.70	460.38	1.35	621.52	1.53	950.92		
5	2.00	37.28	1.35	50.33	-2.25	-113.23		
	Carga vertical proveniente de la superestructura							
P_V		1011.47	1.00	1011.47	-0.90	-910.32		
s/c		39.13	0.50	19.57	1.53	29.93		
TOTAL 2114.60 TOTAL						-157.53		

Tabla 33. Cargas verticales actuantes.

	Cargas horizontales en el estado límite Evento Extremo I							
Carga	Fuerza (kn)	Factor de carga	Peso factorizado	Brazo (m)	Momento factorizado (kn-m)			
E_a	206.79	1.50	310.19	-2.73	-846.81			
$E_{S/C}$	41.09	0.50	20.55	-4.10	-84.23			
F_{BR}	9.85	0.50	4.93	-6.15	-30.29			
F _{SIS}	404.58	1	404.58	-6.15	-2488.167			
				TOTAL	-3449.50			

Fuente: elaboración propia

Tabla 34. Cargas horizontales actuantes.

Carga vertical factorizada resultante: 2114.60 kn

Momento factorizado resultante: -157.53-3449.50=-3607.03

$$e = \left| \frac{-3607.03}{2114.60} \right| = 1.71$$

La AASHTO establece que, para el diseño estructural de las fundaciones, se debe considerar una presión de contacto uniformemente distribuida en un ancho efectivo de zapata B', igual al ancho real B menos 2 veces la excentricidad.¹⁴

$$B' = 6.50 - 2 * 1.71 = 3.08$$

¹⁴ AASHTO LRFD, (2010). Especificaciones técnicas para diseño de puentes

Distribución uniforme de esfuerzo:

$$\frac{2114.60}{3.08} = 686.56 \text{ kn/m}$$

Cargas sobre la punta:

$$w_{pp} = 2400 * 1.4 * 1 = 3360 \text{ kg/m} = 32.96\text{kn/m}$$
$$w_{suelo} = 1900 * 1 * 1 = 1900 \text{ kg/m} = 18.64\text{kn/m}$$
$$w_u = 686.56 - 32.96(0.90) - 18.64(1.00) = 638.26 \text{ kn/m}$$
$$M_u = \frac{638.26 * 2 * 2}{2} = 1276.52 \text{ kn-m}$$

d = 130 cm

 $f'c = 280 \text{ kg/cm}^2$

b = 100 cm

 $As = 26.97 \text{ cm}^2$

Con barras $\varphi 1\frac{3}{8}$ (A_S = 10.06 cm²) 1 $\varphi 1\frac{3}{8}$ @ 300 mm. (cara inferior)

3.6.9.3. Diseño del talón

El ancho efectivo de la zapata B' es de 3.08 m, mientras que la longitud de la punta más el espesor del muro es de 3.00 m, por lo cual se considerará que las únicas cargas actuantes sobre el talón son su peso propio y el peso del relleno.

Diseño por flexión

$$w_{pp} = 2400 * 1.4 * 1 = 3360 \text{ kg/m} = 32.96 \text{ kn/m}$$

$$w_{suelo} = 1900 * 6.5 * 1 = 12350 \frac{\text{kg}}{\text{m}} = 121.15 \text{ kn/m}$$
$$M_{u} = 1.25 \left(\frac{32.96 * 3.50^{2}}{2}\right) + 1.35 \left(\frac{121.15 * 3.50^{2}}{2}\right) = 1254.11 \text{ kn-m}$$
$$d = 132.50 \text{ cm}$$

 $f'c = 280 \text{ kg/cm}^2$

b = 100 cm

 $As = 25.98 \text{ cm}^2$

Con barras $\phi 1\frac{3}{8}$ " (A_S = 10.06 cm²) 1 $\phi 1\frac{3}{8}$ " @ 300 mm. (Cara superior) Verificación por cortante:

$$V_{\rm u} = 1.25(32.96 * 3.50) + 1.35(121.15 * 3.5) = 716.63 \ Kn$$

$$\Phi V_{\rm c} = 0.9 * 0.53 * \sqrt{280} * 100 * 132.50 = 105758.01 \ kg = 1037.48 \ Kn$$

$$1037.48 \ Kn > 716.63 \ Kn \ OK$$

3.6.9.4. Diseño de la pantalla superior del muro (parapeto)

Se diseñará la pantalla superior para que soporte el empuje de tierra, el empuje debido a la sobrecarga superficial y la fuerza de frenado. Para evaluar la longitud de muro que soportará la carga de frenado, consideraremos que la carga proveniente de las ruedas se distribuye hacia abajo con un ángulo de 45 grados con respecto a la horizontal, como se muestra en la Figura 60. Se diseñará el parapeto como un elemento en flexión, despreciando las cargas verticales.¹⁵

¹⁵ Acevedo Laos, M. (2015). Diseño de un puente con estructura de acero. Perú.

Fuente: elaboración propia

 $A_{\rm S} \ge \frac{760 * 759 * 100}{2(759 + 100)4200} = 7.99 \,{\rm cm}^2/{\rm m}$

Con barras $\phi^5/_8$ $^{\prime\prime}$ (A_s = 2.84 $cm^2)~$ 1 $\phi5/8^{\prime\prime}$ @ 250 mm.

Corres		Factor de	Peso	Brazo (m)	Momento factorizado
Carga	Fuerza (KII)	carga	factorizado		(kn-m)
E_a	23.26	1.50	34.89	0.68	23.83
$E_{S/C}$	30.75	1.75	53.81	1.03	55.43
F _{BR}	162.50	1.75	284.38	2.05	582.97
				TOTAL	662.23

Tabla 34. Cargas horizontales actuantes.

Fuente: elaboración propia

Considerando un espesor del parapeto de 35 cm:

$$M_u = 662.23 \text{ kn} - \text{m}$$

d = 30 cm

f'c = 210 kg/cm²

b = 759 cm

 $As = 61.59 \text{ cm}^2$

Acero necesario por metro de longitud de muro:

As
$$=\frac{61.59}{7.59}=8.11 \text{ cm}^2/\text{m}$$

Con barras $\phi 5/8''$ (A_S = 1.99 cm²) 1 ϕ 5/8'' @ 200 mm.

Verificación por cortante:

 $V_{u} = 373.08 Kn$

$$\Phi V_{c} = 0.9 * 0.53 * \sqrt{210} * 759 * 30 = 157395.04 \ kg = 1542.47 \ Kn$$

1542.47 Kn > 373.08 Kn OK

3.7. Diseño de Pilares

3.7.1. Geometría del puente.

Según la concepción del modelo estructural, el puente será de tres tramos, un apoyo del extremo será fijo y el resto de los apoyos serán articulados.

3.7.2. Datos del pilar.

- Propiedades de los materiales
 - > Densidad del concreto $W_c = 2400 \ kg/m^3$
 - > Resistencia a la compresión del concreto a los 28 días f'c = 28 MPa
 - > Resistencia del refuerzo de acero $f_v = 420 MPa$
- Recubrimiento de los refuerzos de acero [A5.12.3-1]
 - Recubrimiento = 75 mm
 Cabeza de pilar
 - Recubrimiento =75 mm columna de pilar

- Recubrimiento = 50 mm cimiento
 Recubrimiento superior del
- Recubrimiento = 75 mm Recubrimiento inferior del cimiento

3.7.3. Selección óptima del tipo de pila

Según AASHTO LRFD [A 11.2]

Cuando seleccionamos el tipo de pila optimo, este puede depender de las condiciones de sitio, costo de ejecución, geometría de la superestructura y estética. Los más comunes tipos de pila son: Pila cabeza de martillo, Pila tipo pared, Pila multicolumna. Para el diseño de este caso se escogerá la pila cabeza de martillo.

3.7.4. Criterio de diseño para pilar cabeza de martillo

El primer paso del diseño es identificar el apropiado criterio de diseño. Esto incluye, pero no está limitado a, definir propiedades e materiales, identificar información relevante de la superestructura y determinar la geometría del pilar requerida.

3.7.4.1. Datos relevantes de la superestructura

Espesor del tablero $h_s = 200 \text{ mm}$

Numero de vigas Ng=7

Espaciamiento de las vigas S= 2400 mm

Volado de tablero DOH= 1050 mm

Nro de luces= 3

L1=22500 mm; L2=27000; L3=22500 Longitud de la luz.

Profundidad de la superestructura Hsuper=1800 mm

Altura de pilares H = 6750 mm (desde fondo de fundación)

3.7.4.2. Reacciones de carga muerta en viga

En vigas interiores:

 $Rint_{DC} = 56.59 \text{ kn}$

 $Rint_{DW} = 53.60 \text{ kn}$

En vigas exteriores:

 $\text{Rext}_{\text{DC}} = 501.31 \text{ kn}$

 $\text{Rext}_{\text{DW}} = 37.94 \text{ kn}$

3.7.4.3. Reacciones de carga viva por línea de diseño

En vigas:

 $Rint_{máxLL} = 287.97 \text{ kn}$

Estas cargas son por línea de diseño y no incluyen carga dinámica. Las reacciones de la pila son controlados 90%(camión + carril) conforme a la condición de carga. Las reacciones presentadas incluyen el factor de 90%.

3.7.4.4. Selección de las dimensiones preliminares de pilar

Seleccionar el más óptimo tipo de pilar depende de las condiciones de sitio, consideraciones de costo, geometría de la superestructura y estética. Para este caso de diseño, un pilar con una única columna (cabeza de martillo) fue escogido.

Dado que las especificaciones tienen estándares en relación de las dimensiones mínimas y máximas para cabeza de pila, columna, o cimiento, el diseñador debería basar las dimensiones preliminares del pilar.

Las siguientes figuras muestras las dimensiones preliminares seleccionadas para el diseño de la pila.¹⁶

Figura 61. Esquema frontal del pilar

Fuente: elaboración propia

Figura 62. Esquema transversal del pilar

Fuente: elaboración propia

¹⁶ Ramírez Coria, P. & León Ávila, N. (2010). Apoyo didáctico en la asignatura de puentes CIV 312 texto estudiante. Bolivia.

3.7.4.5. Efectos de la carga muerta

Una vez que las dimensiones preliminares de la pila han sido seleccionadas, las cargas muertas correspondientes pueden ser calculadas de acuerdo con AASHTO LRFD [3.5.1]. Las cargas muertas de la pila deben ser combinadas con reacciones debido a las cargas muertas de la superestructura.

Viga exterior reacciones de carga muerta. (DC y DW)

 $\text{Rext}_{\text{DC}} = 501.31 \text{ kn}$

 $\text{Rext}_{\text{DW}} = 37.94 \text{ kn}$

Viga interior reacciones de carga muerta

 $Rint_{DC} = 56.59 \text{ kn}$

 $Rint_{DW} = 53.60 \text{ kn}$

Cabeza de la pila carga muerta:

 $A_{cap} = (4.95 * 1.00) + (1.00 * 5.5) + (15.40 * 0.80) = 22.77 m^2$

 $DL_{cap} = 22.77 * 1.50 * 2400 * 0.00981 = 804.15 \text{ kn}$

Columna de pila carga muerta

 $DL_{col} = 2.95 * 5.5 * 1.50 * 2400 * 0.00981 = 573.00 \text{ kn}$

Cimiento de pila carga muerta

$$DL_{ftg} = 7.00 * 5.00 * 1.20 * 2400 * 0.00981 = 988.85 \text{ km}$$

 $EV_{ftg} = 1900 * (7.00 * 5.00 * 1.00 - 5.5 * 1.50 * 1.00) * 0.00981 = 498.59 \text{ kn}$

3.7.4.6. Cálculo de los efectos de carga viva

Figura 63. Determinación de la reacción por peso de carril de diseño.

Fuente: elaboración propia

 $R_{carril} = 255.66 \text{ KN}$

Figura 64. Determinación de la reacción por peso de camión de diseño.

Fuente: elaboración propia

$$R_{camión} = 424.03 \text{ KN}$$

Figura 65. Determinación de la reacción por peso de camión de diseño.

Fuente: elaboración propia

$$R_{\text{camión}} = 430.27 \text{ KN}$$

$$P_{\text{camión.IM}} = 0.9 * 430.27 * 1.33 = \frac{515.03}{3} = 171.68 \text{ KN}$$

$$W_{\text{carril}} = 0.9 * 255.66 = \frac{230.09}{3 \text{ m}} = 76.70 \text{ KN/m}$$

En la sección transversal para calcular la reacción en los apoyos, es sometido a las cargas $P_{camión.IM}$ y cargas distribuidas W_{carril} .

$$\sum_{n=1}^{\infty} M_6 = 171.68 * 0.50 + 171.68 * 2.30 + 76.70 * 2.90 * \frac{2.90}{2} - 2.40 * R_7 = 0$$

$$R_7 = \frac{803.23}{2.40} = 334.68 \text{ Kn}$$

$$R_6 = 2 * 171.68 + 76.70 * 2.90 - 334.68 = 231.11 \text{ Kn}$$
$$\sum M_5 = 171.68 * 1.10 + 76.70 * 1.70 * \frac{1.70}{2} + 76.70 * 0.10 * 2.35 - 2.40$$
$$* R_6 = 0$$

$$R_6 = \frac{317.76}{2.40} = 132.38 \text{ Kn}$$

 $R_5 = 171.68 + 76.70 * 1.80 - 132.38 = 177.36 \text{ Kn}$

$$\sum M_4 = 171.68 * 1.70 + 76.70 * 1.30 * 1.75 + 76.70 * 0.5 * 0.25 - 2.40 * R_5$$

= 0

$$R_{5} = \frac{475.94}{2.40} = 198.31 \text{ Kn}$$

$$R_{4} = 171.68 + 76.70 * 1.80 - 198.31 = 111.43 \text{ Kn}$$

$$\sum M_3 = 171.68 * 2.30 + 171.68 * 0.50 + 76.70 * 2.40 * \frac{2.40}{2} - 2.40 * R_4 = 0$$

$$R_4 = \frac{701.60}{2.40} = 292.33 \text{ Kn}$$

$$R_3 = 2 * 171.68 + 76.70 * 2.40 - 292.33 = 235.11 \text{ Kn}$$

$$\sum M_2 = 171.68 * 1.10 + 76.70 * 0.10 * 2.35 + 76.70 * 1.70 * \frac{1.70}{2} - 2.40 * R_3 = 0$$

$$R_3 = \frac{317.70}{2.40} = 132.38 \text{ Kn}$$

$$R_2 = 171.68 + 76.70 * 1.80 - 132.38 = 177.36 \text{ Kn}$$

$$\sum M_1 = 171.68 * 1.70 + 76.70 * 1.30 * 1.75 - 2.40 * R_2 = 0$$
$$R_2 = \frac{466.35}{2.40} = 198.31 \text{ Kn}$$
$$R_1 = 171.68 + 76.70 * 1.30 - 198.31 = 73.08 \text{ Kn}$$

Resumen de reacciones en cada apoyo

$$R_1 = 73.08 \text{ Kn}$$

 $R_2 = 375.67 \text{ Kn}$
 $R_3 = 367.49 \text{ Kn}$
 $R_4 = 403.76 \text{ Kn}$
 $R_5 = 375.67 \text{ Kn}$
 $R_6 = 363.49 \text{ Kn}$
 $R_7 = 334.68 \text{ Kn}$

3.7.4.7. Cálculo de los efectos de otras cargas.

3.7.4.7.1. Fuerza de frenado

Según la norma AASHTO LRFD la fuerza de frenado se deberá como el mayor de los siguientes valores:

 25 por ciento de los pesos por eje del camión de diseño o tándem de diseño.

 5 por ciento del camión de diseño más la carga del carril ó 5 por ciento del tandem de diseño más la carga del carril.

Se asumida que estas fuerzas actúan horizontalmente a una distancia de 1800 mm sobre la superficie de la calzada en cualquiera de las direcciones longitudinales para provocar solicitaciones extremas. Fuerza de frenado por carril

BR = 0.25(145000 + 145000 + 35000) = 81250 N

Fuerza de frenado por cuatro carriles

BR = 81250N * 4 = 325000 N = 325 KN

3.7.4.7.2. Carga de viento (WL, WS)

Carga de viento sobre la superestructura (WS1)

Vista en planta

Figura 66. Vista en planta del área tributaria para el pilar.

Fuente: De las especificaciones AASHTO LRFD

Figura 67. Vista en elevación del área tributaria para el pilar.

Fuente: elaboración propia

Área tributaria:

 $L_{trib} = 24.75 \text{ m}$

 $H_{sup} = 1.80 \text{ m}$

 $A_{trib} = 24.75 * 1.80 = 44.55 \text{ m}^2$

Determinar Velocidad de diseño según AASHTO LRFD 3.8.1.1.

$$V_{DZ} = 2.5 * V_o * \frac{V_B}{V_{10}} * \ln\left(\frac{Z}{Z_o}\right)$$

Dónde:

VDZ = velocidad de viento de diseño a la altura de diseño, Z (km/h)

V10 = velocidad del viento a 10.000 mm sobre el nivel del terreno o sobre el nivel de agua de diseño (km/h)

VB = velocidad básica del viento igual a 160 km/h a una altura de 10.000 mm, con la cual se obtienen las presiones de diseño especificadas en los Artículos 3.8.1.2 y 3.8.2

Z = altura de la estructura en la cual se están calculando las cargas de viento, medida desde la superficie del terreno o del nivel del agua.

V0 = velocidad friccional, característica meteorológica del viento tomada como se especifica en la Tabla 1 para diferentes características de la superficie contra el viento (km/h) Z0 = longitud de fricción del fetch o campo de viento aguas arriba, una característica meteorológica del viento tomada como se especifica en la Tabla 1 (mm)

Para los valores de V0 y Z0

CONDICIÓN	TERRENO ABIERTO	ÁREA SUBURBANA	ÁREA URBANA
V _o (km/h)	13,2	17,6	19,3
$Z_o ({ m mm})$	70	1000	2500

Tabla 35. Valores de V_o y Z_o para diferentes condiciones de la superficie contra el viento Fuente: De las especificaciones AASHTO LRFD

V10 se puede establecer a partir de:

> Cartas de Velocidad Básica Del Viento disponibles en

ASCE 7-88 para diferentes períodos de recurrencia,

- Relevamientos de los vientos en el sitio de emplazamiento,
- En ausencia de un criterio más adecuado, la hipótesis de que V10
 = VB = 160 km/h.¹⁷

Entones tenemos:

$$V_{DZ} = 2.5 * 17.60 * \frac{160}{160} * \ln\left(\frac{5200}{1000}\right)$$

$$V_{DZ} = 72.54 \text{ km/h}$$

Para el cálculo de presión de diseño

¹⁷ AASHTO LRFD, (2012). Especificaciones técnicas para diseño de puentes

Se asumirá que la dirección del viento de diseño es horizontal, a menos que el Artículo 3.8.3 de la AASHTO LRFD especifique lo contrario. En ausencia de datos más precisos, la presión del viento de diseño, en MPa, se puede determinar como:

$$P_{\rm D} = P_{\rm B} * \frac{{V_{\rm DZ}}^2}{25600}$$

	Reticula y	dos, columnas v arcos		Vigas
Ángulo de oblicuidad del viento	Carga lateral	Carga longitudinal	Carga lateral	Carga longitudinal
Grados	MPa	MPa	MPa	MPa
0	0,0036	0,0000	0,0024	0,0000
15	0,0034	0,0006	0,0021	0,0003
30	0,0031	0,0013	0,0020	0,0006
45	0,0023	0,0020	0,0016	0,0008
60	0,0011	0,0024	0,0008	0,0009

Utilizar las presiones básicas de la tabla 36.

Tabla 36. Presiones básicas del viento P_B , para diferentes ángulos de

ataque y V_B 160 km/h Fuente: De las especificaciones AASHTO LRFD

$$P_D = 0.0036 * \frac{72.54^2}{25600}$$
$$P_D = 0.00074 \text{ Mpa}$$

Ahora para determinar la fuerza de diseño la presión calculada se distribuirá en el área tributaria

Para la carga vertical asumiremos el más crítico con un ángulo de ataque de 60°

$$P_{Dv} = 0.0024 * \frac{72.54^2}{25600}$$
$$P_{Dv} = 0.00049 \text{ Mpa}$$

$$WS_v = 0.00049 * 1000000 * 44.55 = 21829.5 N = 21.83 Kn$$

Carga de viento en la subestructura (WS2)

Las fuerzas transversales y longitudinales a aplicar directamente a la subestructura se deberán calcular en base a una presión básica del viento supuesta de 0.0019 MPa.¹⁸

Ángulo de ataque 60°

Área proyectada del cabezal

 $P_{\rm T} = 1.50 * \cos 60^\circ = 0.75 \text{ m}$

¹⁸ AASHTO LRFD, (2012). Especificaciones técnicas para diseño de puentes

$$P_L = 15.40 * \text{sen } 60^\circ = 13.34 \text{ m}$$

 $A_{p1} = (0.75 + 13.34) * 1.8 = 25.36 \text{ m}^2$

Área proyectada de la columna

Figura 69. Ángulo de ataque del viento a 60° en columna Fuente: elaboración propia

> $P_T = 1.50 * \cos 60^\circ = 0.75 \text{ m}$ $P_L = 5.50 * \sin 60^\circ = 4.76 \text{ m}$ $A_{p2} = (0.75 + 4.76) * 2.95 = 16.26 \text{ m}^2$

Entonces la fuerza total proyectada sería:

WS2 = (16.26 + 25.36) * 0.0019 * 1000000 = 79078 N = 79.08 Kn

Cálculo de fuerza de viento sobre vehículos (WL)

$L_{trib} =$	24.75	m
--------------	-------	---

Componene del viento N/mm				
Grados	Componente normal	Componente paralela		
0	1,46	0		
60	0,5	0,55		

Tabla 37. Presiones básicas del viento Fuente: De las especificaciones AASHTO LRFD

Componente normal

 $WL_v = 24750 * 1.46 = 36135 N = 36.14 Kn$

Componente paralela

 $WL_h = 24750 \ast 0.55 = 13612.50 \; \text{N} = 13.61 \; \text{Kn}$

Los factores de carga para los estados límites aplicables son:

		FACTORES DE CARGA						
	RESIST	ENCIA I	RESISTE	ENCIA III	RESIST	ENCIA V	SERV	ICIO I
CARGA	γmax	γmin	γmax	γmin	γmax	γmin	γmax	γmin
DC	1.25	0.90	1.25	0.90	1.25	0.90	1.00	1.00
DW	1.50	0.65	1.50	0.65	1.50	0.65	1.00	1.00
LL	1.75	1.75	-	-	1.35	1.35	1.00	1.00
BR	1.75	1.75	-	-	1.35	1.35	1.00	1.00
WS	-	-	1.40	1.40	0.40	0.40	0.30	0.30
WL	-	-	-	-	1.00	1.00	1.00	1.00
EV	1.35	1.00	1.35	1.00	1.35	1.00	1.00	1.00

Tabla 38. Para los factores de los estados límites Fuente: De las especificaciones AASHTO LRFD Se asumirá dos estados límites más críticos los cuales son RESISTENCIA I y RESISTENCIA V

3.7.5. Diseño de elementos del pilar

3.7.5.1. Diseño cabeza de pilar

Para el diseño del cabezal está sometido mayormente a cargas de compresión, se considera el precio propio del elemento y las reacciones máximas transmitidas de las vigas debido a la carga muerta de la superestructura, y se adicionara las cargas de viento debido que es un evento común como mayor frecuencia.

Cargas verticales en el estado límite Resistencia I					
Elemente	Carga (Kp)	Factor de	Carga		
Elemento	Carga (KII)	carga	factorizado		
DC	804.15	1.25	1005.19		
LL	403.76	1.75	706.58		
Carga	vertical provenient	e de la super	estructura		
DC	501.31	1.25	626.64		
DW	53.60	1. <mark>5</mark> 0	80.40		
LL	287.97	1.75	503.95		
WL	36.14	0.00	0.00		
WS	21.83	0.00	0.00		
		TOTAL	2922.75		

Para el estado límite Resistencia I tenemos:

Tabla 39. Cuadro de resumen para el estado límite Resistencia I Fuente: elaboración propia

Para estado límite de estado Resistencia V tenemos:

Cargas verticales en el estado límite Resistencia V					
Flomonto	Carga (Kn)	Factor de	Carga		
Elemento	Carga (KII)	carga	factorizado		
DC	804.15	1.25	1005.19		
LL	403.76	1.35	545.08		
Carga	vertical provenient	e de la super	estructura		
DC	501.31	1.25	626.64		
DW	53.60	1.50	80.40		
LL	287.97	1.35	388.76		
WL	36.14	1.00	36.14		
WS	21.83	0.40	8.73		
		TOTAL	2690.93		

Tabla 40. Cuadro de resumen para el estado límite Resistencia V Fuente: elaboración propia

Para el diseño debemos optar por el estado límite más crítico por los cual será el $P_U = 2922.75$ Kn.

Para la parte superior del cabezal en un estado de tensión del elemento:

 $P_U = 2922.75 \text{ Kn} \cong 298038 \text{ kg}$

 $\phi = 0.90$

 $fy = 4200 \text{ kg/cm}^2$

$$As_{sup} = \frac{P_{U}}{\emptyset * fy}$$
$$As_{sup} = \frac{298038}{0.90 * 4200} = 78.85 \text{ cm}^{2}$$

con acero Ø $1_{3/8}{}^{\prime\prime}$ = As 10.06 cm²

Resulta primera línea: 9 barras de Ø $1_{3/8}^{\prime\prime}=7*10.06=70.42~cm^2$

Segunda línea: 6 barras de Ø $3/4'' = 4 * 2.84 = 11.36 \text{ cm}^2$

Por lo tanto $81.78 \text{ cm}^2 > 78.85 \text{ cm}^2$

3.7.5.1.1. Proveer refuerzo para control de agrietamiento

En las regiones disturbadas, el radio mínimo de refuerzo para el área bruta de concreto es 0.003. En cada dirección, y el espaciamiento de las barras en estas rejillas no debe exceder las 12 pulgadas, según AASHTO LRFD [5.6.3.6]. Por lo tanto el refuerzo requerido para el control del agrietamiento dentro de una sección de 1 pie es:

Asumimos 6^{''}< 12^{''}

$$As = 0.003 * 150 * 6 * 2.54$$

 $As = 6.86 \text{ cm}^2$

Entonces utilizo

2 barras de $\emptyset 1'' = 2 * 5.10 = 10.20 \text{ cm}^2$

Este espaciamiento de 6 pulgadas para las barras de temperatura y contracción es también usada a lo largo de la parte inferior de la cabeza.

Los estribos son espaciados a sstir=10 pulgadas. Por lo tanto el refuerzo requerido para el control de la fisuración dentro de este espacio es:

Asumimos 10''< 12''

$$As = 0.003 * 150 * 10 * 2.54$$

$$As = 11.43 \text{ cm}^2$$

Entonces utilizo para no exceder las 12² pulgadas como me establece la norma:

4 barras de $\phi \frac{5}{8}$ " = 6 * 1.99 = 11.94 cm²

3.7.5.2. Diseño columna del pilar

3.7.5.2.1. Diseño para Carga axial y Flexión.

El refuerzo preliminar de columna es mostrado en corresponder a 88 barras espaciadas igualmente alrededor del perímetro de la columna LRFD [5.7.4.2] prescribe los limites (ambos máximo y mínimo) en el monto de refuerzo de acero en una columna. Estos chequeos son realizados en la columna preliminar como sigue:

Según el comentario C. 5.7.4.2. El acero mínimo debe cumplir 0.01 * Ag

 $A_g =$ área bruta de la sección

Entonces tenemos $A_s = 0.01 * 550 * 150$

 $A_{s} = 825 \text{ cm}^{2}$

Utilizaremos en total 88 barras de acero corrugado ø $1_{3/8}$ '' @ 150 mm

$$As_{col} = 88 * 10.06 = 885.28 \text{ cm}^2$$
$$Ac_{col} = 550 * 150 = 82500 \text{ cm}^2$$
$$\frac{As_{col}}{Ac_{col}} = \frac{885.28}{82500} = 0.0107$$

 $0.0107 \le 0.08$ (chequeo de la máxima cantidad de refuerzo) OK

$$\frac{0.135 * f'c}{fy} = 0.009$$

 $0.0107 \ge 0.009$ (chequeo de la mínima cantidad de refuerzo) OK

El radio de esbeltez de la columna (Klu/r) sobre cada eje de la columna es calculado posteriormente en orden de evaluar los efectos de esbeltez. Nótese que las especificaciones solo permite seguir la siguiente evaluación de los efectos de esbeltez cuando el radio de esbeltez es menor que 100.

Para este pilar, el largo de los soportes usada en el cálculo del radio de esbeltez sobre cada eje es la altura total del pilar. Esta es la altura desde la parte superior del cimiento a la parte superior de la cabeza del pilar (4750 mm). El factor de largo efectivo en la dirección longitudinal Kx, es tomado igual a 2.1. Esto asume que la superestructura no tiene efecto en restringir el pilar de desplomarse. En esencia, el pilar es considerado una viga libremente en la dirección longitudinal. El factor de largo efectivo en la dirección transversal, Ky, es tomada igual a 1.¹⁹

El radio de giro (r) sobre cada eje puede ser calculado como sigue:

$$I_{xx} = \frac{550 * 150^3}{12} = 154687500 \text{ cm}^4$$
$$I_{yy} = \frac{150 * 550^3}{12} = 2079687500 \text{ cm}^4$$
$$r_{xx} = \sqrt{\frac{I_{xx}}{Ac_{col}}} = \sqrt{\frac{154687500}{82500}} = 43.30 \text{ cm}$$
$$r_{yy} = \sqrt{\frac{I_{yy}}{Ac_{col}}} = \sqrt{\frac{2079687500}{82500}} \text{ M} = 157.77 \text{ cm}$$

¹⁹ WisDOT Brigde Manual, (2010).Brigde manual

El radio de esbeltez para cada eje sigue ahora:

$$K_{x} = 2.1$$

$$K_{y} = 1.0$$

$$L_{u} = 475 \text{ cm}$$

$$\frac{K_{x} \ L_{u}}{r_{xx}} = \frac{2.1 * 475}{43.30} = 23.06 \cong 24$$

$$24 < 100 \quad \text{OK}$$

$$\frac{K_{y} \ L_{u}}{r_{yy}} = \frac{1 * 475}{157.77} = 3.02 \cong 4$$

$$4 < 100 \quad \text{OK}$$

 $As_{col} = 3.12 \text{ in}^2 \text{por un 1', separados a 6''}$

b = 12 in $\alpha_1 = 0.85$ $a = \frac{As_{col} * fy}{\alpha_1 * f'c * b} = \frac{3.12 * 60}{0.85 * 3.5 * 12} = 5.24 \text{ in}$ $\beta_1 = 0.85$ $c = \frac{a}{\beta_1} = \frac{5.24}{0.85} = 6.16 \text{ in}$ $d_t = \frac{150}{2.54} - 2.5 - \frac{1.375}{2} = 55.86 \text{ in}$

Figura 70. Control chequeo de tensión límite

Fuente: elaboración propia

 $\epsilon_{\rm c}(0.002) = fibra$ superior para sección controladas en compresión

 $\epsilon_t(0.005) = fibra$ superior para sección controladas en tracción

$$\epsilon_{ts} = \frac{0.002}{c} (d_t - c) = \frac{0.002}{6.16} (55.86 - 6.16) = 0.016$$
$$\epsilon_{ts} > \epsilon_t = 0.016 > 0.005$$

Por lo tanto, la sección es controlada por la tensión y ϕ debería ser igual a 0.9

El momento del diseño final en la base de la columna para el estado límite de Resistencia I serán definidas como sigue:

Cargas verticales en el estado límite Resistencia I					
Elemente	Carga (Kp)	Factor de	Carga	Brazo (m)	Momento factorizado
Elemento	Calga (KII)	carga	factorizado	DI 820 (III)	(Kn-m)
DC	1377.15	1.25	1721.44	0.00	0.00
LL	403.76	1.75	706.58	0.00	0.00
	Carga	vertical prove	eniente de la s	superestructu	ıra
DC	501.31	1.25	626.64	7.20	4511.79
DW	53.60	1.50	80.40	4.80	385.92
LL	287.97	1.75	503.95	7.20	3628.42
WL	36.14	0.00	0.00	0.00	0.00
WS	21.83	0.00	0.00	0.00	0.00
		TOTAL	2932.42	TOTAL	8526.13

Tabla 41. Cuadro	de resumen	cargas verticales	s para el	l estado límite
------------------	------------	-------------------	-----------	-----------------

Resistencia I

Fuente: elaboración propia

Cargas horizontales en el estado límite Resistencia I					
Carga	Carga (Kn)	Factor de	Carga	Prazo (m)	Momento
Carga	Calga (KII)	carga	factorizado	Di a20 (11)	factorizado
BR	325.00	1.75	568.75	4.75	2701.56
WS1	32.97	0.00	0.00	4.75	0.00
WS2	79.08	0.00	0.00	2.38	0.00
WL	13.61	0.00	0.00	4.75	0.00
				TOTAL	2701.56

Tabla 42. Cuadro de resumen cargas horizontales para el estado límite

Resistencia I

Fuente: elaboración propia

Verificamos nuestro el momento nominal de la columna proyectada con la siguiente ecuación:

$$\begin{split} M_{n} &= 0.85 \text{ f'c } \left(\frac{h}{2} - \frac{a}{2}\right) + \sum f_{si}A_{si} \left(\frac{h}{2} - d_{i}\right) \\ M_{n} &= 122503054 \frac{kg}{cm} = 12013.45 \text{ kn} - m \end{split}$$

Cálculo del acero para verificar nuestra proyección de acero:

$$M_u = 11227.69 \text{ kn} - \text{m}$$

Como se observa Mu está por debajo Mn de nuestra sección de columna por lo tanto cumple.

Si la carga axial factorada es menor que 10 % de la resistencia bruta del concreto multiplicado por el factor phi para miembros en compresión, luego las especificaciones demandan que una ecuación de interacción linear para solo los momentos sea satisfecha según AASHTO LRFD [Equation 5.7.4.5-3]. De otra manera una resistencia a carga axial es calculado basado en el método de cargas reciprocas según AASHTO LRFD LRFD [Equation 5.7.4.5-1]). En este método, las resistencias axiales de la columna son calculadas para cada momento actuante separadamente.

Para el diseño de esta pila, el procedimiento como es discutido anteriormente es como sigue:

$$0.10 * \varphi * f'c * Ac_{col} = 2079000 \text{ kg} = 20388.02 \text{ Kn}$$

Tenemos un $P_u = 2932.42$ Kn

Aunque la columna tiene claramente una excesiva capacidad flexionante aceptablemente grande, un diseño más óptimo no será buscada para la discusión siguiente del checkeo de cortante de la columna.

3.7.5.2.2. Diseño por Cortante (Resistencia V)

Cargas verticales en el estado límite Resistencia V					
Flomento	Cargo (Kp)	Factor de	Carga	Brazo (m)	Momento factorizado
Elemento	Carga (KII)	carga	factorizado	Brazo (III)	(Kn-m)
DC	1377.15	1.25	1721.44	0.00	0.00
LL	403.76	1.35	545.08	0.00	0.00
	Carga	a vertical prov	eniente de la s	uperestructu	ra
DC	501.31	1.25	626.64	7.20	4511.79
DW	53.60	1.50	80.40	4.80	385.92
LL	287.97	1.35	388.76	7.20	2799.07
WL	36.14	1.00	36.14	0.00	0.00
WS	21.83	0.40	8.73	0.00	0.00
		TOTAL	2862.11	TOTAL	7696.78

Tabla 43. Cuadro de resumen para el estado límite Resistencia V Fuente: elaboración propia

Para la columna de la pila, la cortante factorada máxima en cualquier dirección es menor que la mitad de la resistencia factorada del concreto. Por lo tanto, el refuerzo por cortante no es requerido. Esto es demostrado para la dirección longitudinal como sigue:

> $b_{col} = 550 \text{ cm}$ $h_{col} = 150 \text{ cm}$

Conservadoramente dv, puede ser calculada como se muestra a continuación según AASHTO LRFD [5.8.2.9]:

$$d_v = 0.72 * h_{col} = 108 \text{ cm}$$

El siguiente cálculo para dv es simple de usar para columnas y generalmente resulta en un estimado conservativo de la capacidad de cortante.

$$\beta = 2$$

Cortante nominal del concreto es:

$$V_{c} = 0.0316 * \beta * \sqrt{f'c} * b_{col} * d_{v}$$
$$V_{c} = 1163.76 \text{ kips}$$

$$V_{n1} = 1163.76$$

 $V_{n2} = 0.25 * f'c * b_v * d_v$
 $V_{n2} = 9207.02 \text{ kips}$

Escogemos el mínimo

 $\varphi_v=0.90$ $V_r=\varphi_v\ast V_n$ $V_r=1047.38~{\rm kips}=4661~{\rm Kn}$

 $V_u < V_r$

Y por lo tanto el diseño me cumple

3.7.5.3. Diseño de la zapata

Para el diseño de la cimentación se efectuará con el estado límite Resistencia V

Cargas verticales en el estado límite Resistencia V						
Elomonto	Corgo (Kn)	Factor de	Carga			
Liemento		carga	factorizado			
DC	2366.00	1.25	2957.50			
LL	403.76	1.35	545.08			
Carga	vertical provenient	e de la super	estructura			
DC	501.31	1.25	626.64			
DW	53.60	1.50	80.40			
LL	287.97	1.35	388.76			
WL	36.14	1.00	36.14			
WS	21.83	0.40	8.73			
EV	<mark>498.5</mark> 9	1.35	673.10			
		TOTAL	5316.34			

Tabla 44. Cuadro de resumen para el estado límite Resistencia V para el

diseño de zapata

Fuente: elaboración propia

Cálculo del peso neto del suelo

$$\sigma neta = (4 * 100^2) - (1900 * 2.20)$$

$$\sigma$$
neta = 35820 $\frac{\text{kg}}{\text{m}^2}$ = 351.39 Kn/m²

Se procede al cálculo del área necesaria de la zapata a diseñar

$$A_{\text{necesaria}} = \frac{5316.34}{351.39} \cong 16 \text{ m}^2$$

En base eso escojo en pre dimensionamiento de la zapata seria:

$$A_{\rm zap} = 7.00 * 4.00 = 28.00 \,{\rm m}^2$$

Largo= 7.00 m y ancho = 4.00 m

Suponiendo la altura de zapata

$$h = 1.20 m$$

 $d = 1.125 m$

Análisis para el diseño de zapata

$$\sigma_{ult} = 5316.34/28.00$$

 $\sigma_{ult} = 189.87 \text{ Kn/m}^2$

Cortante crítico

Figura 71. Vista en planta de la zapata

Fuente: De las especificaciones AASHTO LRFD

 $V_{\text{críticoX}} = \sigma_{\text{ult}} * x * \text{ancho de zapata}$

Para el cálculo de X

$$X = \frac{\text{Ancho}_{\text{zap}}}{2} - \frac{\text{Ancho}_{\text{pilar}}}{2} - d$$
$$X = 0.125 \text{ m}$$

Reemplazando

$$V_{críticoX} = 189.87 * 0.125 * 4.00 = 94.94 \text{ Kn}$$

Contribución del concreto

Comprobación

$$2881.95 \text{ Kn} > 94.94 \text{ Kn}$$
 OK

Entonces se procede al diseño por flexión

3.7.5.3.1 Diseño por punzonamiento

Figura 72. Vista en planta y elevación para el área crítica

Fuente: De las especificaciones AASHTO LRFD

x = 4.00 - (4.00 - 1.125 - 1.50) = 2.63m

$$y = 7.00 - (7.00 - 1.125 - 5.50) = 6.63m$$

Área crítica

$$A_{crítica} = 2.63 * 6.63 - 5.5 * 1.5 = 9.19 \text{ m}^2$$

Perímetro crítico

$$b_0 = 2 * (2.63 + 6.63) = 18.52 \text{ m}$$

Cortante por punzonamiento $V_{\rm cp}$

$$V_{cp} = \sigma_{ult} * (A \text{ zapata} - A \text{ crítica})$$

 $V_{cp} = 189.87 * (28.00 - 18.52) = 1799.97 \text{ Kn}$

Contribución del concreto

 \emptyset Vc = 0.85 * 1.10 * $\sqrt{210}$ * 1852 * 112.5 = 2823025.25 kg \cong 27693.88 Kn

Comprobación

$$ØVc > V_{cp}$$

Se procede al diseño flexión

Momento último

$$Mu_{y} = \sigma_{ult} * \frac{Lx^{2}}{2}$$
$$Mu_{x} = \sigma_{ult} * \frac{Ly^{2}}{2}$$

En donde:

$$x = \frac{4.0}{2} - \frac{1.5}{2} = 1.25 \text{ m}$$

$$Mu_{y} = 189.87 * \frac{4.00 * 1.25^{2}}{2}$$

$$Mu_{y} = 593.34 \frac{Kn}{m}$$

$$d = 112.5 \text{ cm}$$

$$\phi = 0.85$$

$$fy = 4200 \text{ kg/cm}^{2}$$

$$As = 14.54 \text{ cm}^{2}/\text{m}$$

Debido que el momento $Mu_x\,$ es menor se considera en ambos sentidos Entonces se escogen barras $\,1\, \emptyset\,1^{\prime\prime}\,$ @ 250 mm.

CAPÍTULO IV: CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Como se ilustró en este trabajo de investigación el diseño de cada uno de los elementos que conforman el puente continuo se desarrolló con la norma AASHTO LRFD con sus parámetro, pautas y criterios de diseño establecidos en la misma; lo cual comparando con la norma diseño de puentes propuesto por el ministerio de transportes y comunicaciones, es una copia de la normal AASHTO LRFD adecuada para el Perú y de forma generalizada y como se usó la AASHTO LRFD y se tocó más puntos de modo específicos para el diseño del puente por lo consiguiente. Se concluye que la norma establecida por la AASHTO LRFD es apta para el diseño de puentes en el Perú.

Las cargas establecidas en la norma AASHTO LRFD se asemejan a nuestra realidad debida que existen cargas de vientos, nieve, sismos, etc. Ocasionado por fenómenos naturales que se presentan en el Perú.

Se concluye satisfactoriamente el diseño de los diferentes elementos que componen el puente de 4 carriles cumpliendo con los criterios de diseño, parámetros y restricciones que presenta la NORMA AASHTO, "LRFD Bridge Design Specifications". American Association of State Highway and Transportation Officials. Como se presentan en esta tesis nombrando el artículo utilizado para el diseño de cada elemento del Puente. El diseño final estará compuesto por:

- Losa de concreto armado:

Geometría: Espesor de 20 cm bajo la via y 23 cm en el volado.

Refuerzo de acero: Que cumple con todos los requisitos de los diferentes estados límites y los controles de fisuración requeridos para el diseño de puentes.

Para momento positivo: barras 1 $\phi^5/_8$ " @ 250 mm.

Para momento negativo: barras 1 $\varphi^5/_8$ " @ 200 mm.

Para acero de distribución: barras 1 $\varphi^1/_2$ " @ 200 mm.

Armadura por contracción y temperatura: barras 1 $\phi^3/_8 \H'$ @ 330 mm.

Vigas Te de concreto armado:

Geometría: Alma de 40 cm de ancho y altura de 160 cm, Ala superior con espesor de 20 cm y ancho de 210 cm.

Refuerzo de acero: Que cumple con todos los requisitos de los diferentes estados límites y los controles de fisuración requeridos para el diseño de puentes.

Para flexión positiva: 16 barras de 28 mm de diámetro (28.65 mm)

Para flexión negativa: 18 barras de 28 mm de diámetro (28.65 mm)

Separación de estribos de 250 mm.

Apoyos Elastómericos:

Se eligió un apoyo elastomérico de dureza 60, de L=350 mm, W=400 mm, con un espesor total de 111 mm conformado por: 7 capas de elastómero de neopreno de 15 mm y 4 planchas de refuerzo de 1.5 mm G50.

Pernos de Anclaje de 1 3/4" de diámetro y un espesor de placa base de 1 1/2".

- Diafragmas:

Se eligio un angulo L de 3"x3"x5/16" y 4 pernos de 1/2".

- Estribos:

Conformado por los elementos:

Pantalla superior (muro parapeto)

Para momento positivo: barras 1 $\varphi^5/_8$ " @ 250 mm.

Para momento negativo: barras 1 $\phi^5/_8$ " @ 200 mm.

Para acero de distribución: barras 1 $\phi^5/_8$ \sim @ 250 mm.

Pantalla muro (cuerpo del estribo)

Para momento positivo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 150 mm.

Para momento negativo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 125 mm.

Para acero de distribución: barras 1 $\phi^5/_8$ " @ 250 mm.

Para fundación (cimentación)

Para momento positivo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 300 mm.

Para momento negativo: barras 1 $\varphi 1 \frac{3}{8}$ " @ 300 mm.

Para acero de distribución: barras 1 $\varphi^3/_4$ " @ 200 mm.

- Pilares:

Conformado por los elementos: Cabezal del pilar (tipo martillo) Geometría: 15.40 m de largo (base mayor) y 5.50 m de largo (base menor) y ancho de 1.50 m Acero estructural:

Acero longitudinal: Con barra de 1 $\emptyset 1 \frac{3}{8} \stackrel{\prime \prime}{=} @ 210 mm y 1 \\
\emptyset 3/4 \stackrel{\prime \prime}{=} @ 425 mm (Cara superior e inferior del cabezal)$ $Acero para control de fisuración: 2 barras de <math>\emptyset 1 \stackrel{\prime \prime}{=} @ 150 mm$ Acero temperatura y contracción: 4 barras de $\phi \frac{5}{8}$ "@ 250 mm a cada 300 mm

Columna del pilar

Geometría: 5.50 m de largo, ancho de 1.50 m y con altura de 2.95 m.

Acero estructural:

Acero longitudinal: Con barra 1 $\emptyset 1_{3/8}$ "@ 150 mm en el perímetro de la columna

Zapata del pilar

Geometría: 7.00 m de largo, ancho de 4.00 m y con altura de 1.20 m.

Acero estructural:

Doble parrilla en ambas direcciones: 1 Ø 1" @ 250 mm.

RECOMENDACIONES

Se recomienda analizar bien las condiciones del lugar para escoger el mejor tipo de puente que pueda ser más eficaz para solicitado, ya que la norma establecida por la AASHTO LRFD tiene amplia información y metodología para diversos tipos de puentes.

Para el método de análisis aproximado establecido en la norma AASHTO LRFD, se recomienda comparar los resultados utilizando un programa para la obtención de momentos y cortantes; en este caso se utilizó el programa SAP 2000 v.14.

Se aconseja el orden adecuado para el diseño del puente, el diseño de la superestructura y luego de la subestructura, debido que para el diseño de la subestructura se consideran las reacciones originadas en la superestructura.

REFERENCIAS

- [1] American Association of State Highway and Transportation Officials (2012). AASHTO LRFD Bridge Design Specifications. Washington – USA.
- [2] Ministerio de Transportes y Comunicaciones. (2010). Manual de diseño de puentes. Perú Lima.
- [3] Ramirez Coria, P & León Ávila, N. (2010) "Apoyo didáctico en la asignatura de puentes CIV 312 texto estudiante". Universidad Mayor de San Simó.Bolivia. Bolivia Cochabamba.
- [4] Acevedo Laos, V. (2015) "Diseño de un puente con estructura de acero" Pontificia Universidad Católica del Perú. Perú Lima.

[5] Wisconsin Department of Transportation Brigde Manual (2010) WisDOT brigde manual – USA.

[6] Rodríguez Serquén, A. (2012) Puentes con AASHTO LRFD 2010.

ANEXOS